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Abstract 
 
 This paper shows a general non-parametric technique for maximizing the correct 

classification of binary choice or two-category data.  Two general classes of data are analyzed.  

The first consists of binary choice matrices such as congressional roll calls or preferential rank 

ordering of stimuli gathered from individuals.  For this class of data a general non-parametric 

unfolding procedure is developed.  To unfold binary choice data two subproblems must be 

solved.  First, given a set of chooser or legislator points a cutting plane through the space for the 

binary choice must be found such that it divides the legislators into two sets that reproduce the 

actual choices as closely as possible.  Second, given a set of cutting planes for the binary choices 

a point for each chooser or legislator must be found which reproduces the actual choices as 

closely as possible.  Solutions for these two problems are shown in this paper. 

 The second class of data analyzed consists of a two-category dependent variable and a set 

of independent variables.  This class of data is a subset of the binary choice unfolding problem.  

The cutting plane procedure can be used to estimate a cutting plane through the space of the 

independent variables that maximizes the number of correct classifications.  The normal vector 

to this cutting plane closely corresponds to the beta vector from a standard probit, logit, or linear 

probability analysis.  
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1.  Introduction 
 
 Categorical choice data occur frequently in the social and behavioral sciences.  The 

purpose of this paper is to show a general non-parametric technique for maximizing the correct 

classification of binary choice or two-category data.  I analyze two general classes of such data.  

The first class consists of binary choice matrices such as congressional roll calls or preferential 

rank ordering of stimuli gathered from individuals.  For this class of data a general 

non-parametric unfolding procedure is developed.  To unfold binary choice data two 

subproblems must be solved.  First, given a set of chooser or legislator points, a cutting plane 

through the space for the binary choice must be found such that it divides the legislators into two 

sets so that the number of correct classifications of the legislators is maximized.  Second, given 

a set of cutting planes for the binary choices, a point for each chooser or legislator must be found 

such that the number of correct classifications of the choices is maximized.  Sections 3 and 4 

below show solutions for these two problems. 

The second class consists of data sets that would normally be analyzed with probit, logit, 

or linear probability models; that is, data sets with a two-category dependent variable and a set of 

independent variables.  The cutting plane procedure developed in section 3 can be used to 

estimate a cutting plane through the space of the independent variables such that the number of 

correct classifications of the dependent variable is maximized.  The counterpart to the beta 

vector from a probit, logit, or linear probability model is the normal vector of this cutting plane.  

In a Monte-Carlo analysis below I show that if the underlying error process is symmetric, the 

normal vector which maximizes classification and the beta vector from a probit analysis are 

virtually identical. 
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 I make only two assumptions:  1) the choice space is Euclidean; and 2) the individuals 

making choices behave as if they utilize symmetric, single-peaked preferences.   

 The techniques I develop below are similar in spirit to those pioneered by Shepard 

(1962a,b) and Kruskal (1964a,b).  They developed what became to be known as non-metric 

multidimensional scaling.  Their initial focus was on similarities data.  Their idea was to 

reproduce the rank ordering of the data as “closely” as possible.  This became known as a 

non-metric approach in contrast to a metric approach such as factor analysis which treated the 

similarities as ratio scale data.  The idea was to estimate a set of points in a Euclidean space 

such that the interpoint distances between the stimulus pairs were in the same rank order as the 

observed similarities.   

 Instead of placing points in a Euclidean space in such a way so as to reproduce the rank 

ordering of a set of data, I estimate cutting planes or cutting planes and chooser points in an 

Euclidean space such that the correct classification of the observed two-category data is 

maximized.   

 The paper proceeds as follows:  section 2 defines the problem and explains the notation I 

use throughout the paper; section 3 develops the cutting plane procedure; section 4 shows how to 

estimate the legislator/chooser points; section 5 shows Monte-Carlo results for the roll call 

problem; section 6 shows empirical applications; and section 7 concludes. 

 

2.  Notation and Definitions 
 
 I begin by defining the problem in terms of the first class of data – a binary choice matrix 

– because the second class of data – a set of independent variables and a two-category dependent 

variable – is a special case of the binary choice matrix problem. 
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 Given a matrix of binary choice data, the problem consists of finding a set of legislator 

points and a set of cutting planes corresponding to each binary choice in an Euclidean space of s 

dimensions such that each cutting plane divides the legislators into two sets that reproduce the 

actual choices as closely as possible.  In other words, the task is to estimate a set points for the 

legislators (subjects) and a set of cutting planes for the roll calls (stimuli) that maximize the 

correct classification of the observed choices.   

Let i=1,...,p be the number of legislators, j=1,...,q be the number binary choices (hereafter 

referred to as roll calls), k=1,...,s be the number of dimensions, X be the p by s matrix of 

legislator coordinates, and let T be the p by q matrix of observed choices.  The choices will 

simply be yea or nay which I will represent as “y” and “n” respectively.  T can contain missing 

entries.   

For data sets which consist of a set of independent variables and a two-category 

dependent variable, the notation above is simply redefined.  Let X be the p by s matrix of 

independent variables, where p is the number of observations and s is the number of independent 

variables, and let t be the p length vector which is the two-category dependent variable.  In the 

development of the cutting plane procedure below, I will use the notation defined for a matrix of 

binary choice data.  I will return to the problem of a set of independent variables and a 

two-category dependent variable in section 3.c. 

Technically, a plane is defined as z′n = v′n where z, n, and v are s by 1 vectors and the 

plane consists of all points z such that (z - v) is perpendicular to the normal vector, n, and v is 

some point in the plane.  In simple algebra, an example of a plane in three dimensions is 

3z1 - 2z2 + z3 = 5 
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This plane is perpendicular to the normal vector -- n′ = (3, -2, 1) -- and v is any point in 

the plane, for example (1, -1, 0), such that v′n = 5.   

In this context, the problem is to solve for the normal vector, n.  Let N be the q by s 

matrix of normal vectors for the q cutting planes.  Given the number of dimensions, s, the 

classification problem consists of finding estimates of X and N, which I will denote as X* and 

N* respectively, which maximize the correct classifications.  

Maximizing the correct classification of a binary choice matrix can be broken down into 

two subproblems – 1) given the legislator coordinates, find the optimal cutting plane; and 2) 

given the cutting planes, find the optimal legislator coordinates.  Sections 3 and 4 show 

solutions for these two subproblems. 

3.  Finding the Optimal Cutting Plane 

 Given the p by s matrix, X, of legislator coordinates and the p by 1 vector of votes on the 

jth roll call, t, the problem is to find the plane that divides the legislators into two groups such 

that the number of correct classifications is maximized.  Figure 1 shows an example in two 

dimensions. 
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 Figure 1 illustrates the fact that the cutting plane problem is equivalent to finding a vector 

– in this case, n – such that when the legislator points are projected onto the vector a cutting 

point can be found that maximizes the correct classifications.  By definition, all points in the 

cutting plane are projected onto this cutting point.  The problem has two distinct parts which I 

will discuss in turn.  First, given an estimate of the normal vector, I show how to find the 

optimal plane perpendicular to the normal vector and its associated correct classifications; and 

second, given an estimated cutting plane, I show how to change the orientation of the plane 

through the s-dimensional space in order to find a better estimate of the normal vector. 

 3. a. Calculating the Correct Classifications 

Without loss of generality let the legislator coordinates lie within the s dimensional unit 

hypersphere and let the origin of the space be placed at the centroid of the legislator coordinates; 

that is, let 

x  1ik
2

k=

s

1
∑ ≤    , i=1,...,p     and     x  0ik

i=

p

1
∑ =    , k=1,...,s  

In addition, let nj be the normal vector for the jth roll call that maximizes correct classifications.  

Without loss of generality nj can be constrained to be of unit length; i. e., nj′nj = 1.  The 

projections (see Figure 1B) are, therefore:  

                                                      Xnj = w                  (1) 

Note that the elements in the p-length vector, w , range from -1 to +1.  (To see this, let one of 

the legislator points be -nj and another legislator point be +nj.)  The elements in w all lie on a 

line that passes through the origin of the s-dimensional unit hypersphere in the direction of the 
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normal vector with exit points -nj and +nj respectively.  Hereafter, I will refer to this line as the 

projection line.   

 Let nj* be an estimate of nj and let w* be the corresponding estimate of w.  The correct 

classifications associated with nj* can be calculated quite easily.  Figure 2 illustrates the method.   

 
Figure 2.  Calculating Correct Classification 

 
 

 
Actual Voting Pattern 

 
        Y   Y   Y   Y   Y   Y   . . . .  Y   Y * N   Y * N   Y * N   N . . .N    
N 
    ___________________________________________________________ 
 -1.0  w1  w2  w3  w4      . . . . . . .   0.0             . . . . . . .             wp-1   
wp  +1.0 
 

Perfect Voting Patterns 

(-1 , w1)  produces  nnnnnnnnn.....nn or yyyyyyyyy.....yy 
(w1 , w2)  produces  ynnnnnnnn.....nn or nyyyyyyyy.....yy 
(w2 , w3)  produces  yynnnnnnn.....nn or nnyyyyyyy.....yy 
(w3 , w4)  produces  yyynnnnnn.....nn or nnnyyyyyy.....yy 

 
etc. 

 
(wp-1 , wp)  produces yyyyyyyyy.....yn or nnnnnnnnn.....ny 
(wp   , +1)  produces yyyyyyyyy.....yy or nnnnnnnnn.....nn 

 

 

 For ease of exposition, let the projected legislator coordinates from left to right be 

denoted in order as w1 to wp such that -1 ≤ w1 ≤ w2  ≤ w3 ≤ ... ≤ wp ≤ +1 and the “y”s and “n”s 

above the dimension line in the Figure indicate how the corresponding legislators voted on the 

jth roll call.  There are p+1 possible regions that the cutting point could be in -- (-1, w1), (w1 , 

w2), ... , (wp , +1) -- and for each region there are exactly 2 possible perfect voting patterns for an 
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overall total of 2(p+1) possible perfect voting patterns as shown in the Figure.  However, region 

(wp , +1) is redundant since it produces the same perfect patterns as the region (-1 , w1) so it may 

be discarded leaving 2p unique perfect voting patterns to consider.   

Since there are only 2p perfect patterns, it is a simple matter to compare each perfect 

pattern with the actual pattern of votes, tj.  This can be done very efficiently by first assuming 

that the cutting point is in the region (-1 , w1) and calculating the corresponding number of 

correct classifications.  Next assume that the cutting point is in the region (w1 , w2).  Only one 

calculation has to be made to get the correct classifications for this cutting point since the only 

change is that the cutting point has been moved from the left of w2 to the right of w2.  If there is 

no missing data, either the correct classification increases by 1 or decreases by 1 when the cutting 

point is moved from the left of w2 to the right of w2.  Similar reasoning holds for the remaining 

points.  For each possible cutting point the correct classification corresponding to the two 

possible perfect patterns can be calculated.  The estimated cutting point is set equal to the 

midpoint of the region for which correct classification is a maximum.  For the example shown in 

Figure 2, placing the cutting point at the position of either of the three asterisks would produce 

only two classification errors for a correct classification of p-2. 

Note that this process is equivalent to moving the cutting plane through the unit 

hypersphere along the estimated normal vector, nj
*. 

 

3. b.  Calculating the Optimal nj
* 

Let c* denote the cutting point that maximizes correct classification on the projection line 

formed by the elements of Xnj* = w* .  The point c* is therefore: 

                                                  z′nj* = v′nj* = c*          (2) 
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 Given nj* and c*, the estimated cutting plane consists of all points v satisfying equation 

(2).  In order to get a new estimate of nj , the estimated cutting plane given by equation (2) must 

be rotated through the space in a direction that increases correct classification.  I accomplish this 

by rotating the cutting plane towards the legislator points which are classification errors. 

To do this, I create the cutting plane by projecting all the correctly classified legislator 

points onto the surface of the cutting plane while leaving the incorrectly classified legislators at 

their original positions.  In two dimensions this produces a line through the space made up of 

correctly classified legislators around which is a scattering of points corresponding to the 

incorrectly classified legislators (see Figure 3).1  Much in the spirit of the classic ordinary least 

squares regression problem, a new cutting plane can then be estimated by simply finding the 

plane that best fits this set of points using the principle of least squares.   
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To see how this is done, let xi be the s by 1 vector denoting the ith legislator’s point in the 

space and let wi be the corresponding point on the projection line from equation (1).  Construct a 

p by s matrix, V, as follows:  if legislator i is correctly classified, then his point is projected onto 

the cutting plane and that point becomes the ith row of V;  if legislator i is incorrectly classified, 

then his point remains at its original position and that point becomes the ith row of V.  That is: 

vi = xi + (c* - wi)nj*   if correctly classified 
         (3) 
vi = xi                          if incorrectly classified 

In the correctly classified case, to see that vi is on the plane defined in equation (2), note that 

  nj*′vi  = nj*′xi + nj*′nj* (c* - wi) = wi + (c* - wi) = c*           

because nj*′nj* = 1 and (c* - wi) is a scaler. 
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 Without loss of generality, the centroid of V can be placed at the origin.  That is, let m be 

the s length vector of the means of V, and let Jp be a p by 1 vector of ones.  Define V* as 

V* = V - Jpm′               (4) 

 Panel A of Figure 3 shows a vote in two dimensions which would be perfectly classified 

by the indicated cutting line.  Panel B shows the V* produced by using an initial estimate of nj*′ 

= (0 , 1) -- that is, an estimated normal vector perpendicular to the true normal vector.  All the 

“y” and “n” tokens off the plane are classification errors.  Clearly, if the plane were rotated 

counter-clockwise towards the errors a better fit would be obtained.  This can be accomplished 

by fitting a line through the scatterplot of “y”s and “n”s in panel B. 

 This is accomplished by using a famous result due to Eckart and Young (1936).  Eckart 

and Young addressed the following problem.  Let A be a p by s matrix of rank s which, by 

definition, is a set of p points in an Euclidean space of s dimensions.  Estimate the best 

r-dimensional hyperplane -- where r < s -- through this set of points.  That is, find a p by s matrix 

B of rank r < s, such that  

                                   (a  -  bik ik
k=1

s

i=1

p

)2∑∑  

is minimized.  Eckart and Young proved that B is found by performing a singular value 

decomposition of A , inserting zeroes in place of the s-r smallest singular values, and 

remultiplying.2 

To show how this is accomplished with respect to V*, let the singular value 

decomposition of V* be 

V* = UΛΘ′                      (5) 
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where U is a p by s orthogonal matrix consisting of the first s eigenvectors of the p by p matrix 

V*V*′, Θ is an s by s orthogonal matrix consisting of the s eigenvectors of the s by s matrix 

V*′V*, and Λ is an s by s diagonal matrix containing the singular values in descending order on 

the diagonal (V*V*′ and V*′V* have the same non-zero eigenvalues – the singular values are the 

square roots of these eigenvalues).  Let Is be the s by s identity matrix.  By definition, U′U = 

Θ′Θ = Is .3 

 By the Eckart-Young result, the best fitting line through the scatterplot shown in panel B 

of Figure 3 is found by inserting a zero in place of the second singular value in Λ and 

remultiplying.  That is, let Λ# be the s by s diagonal matrix identical to Λ except for the 

replacement of the sth singular value (by construction, the smallest singular value) by zero, then 

the estimated hyperplane is: 

V# = UΛ#Θ′                                     (6) 

where V# will be of rank s-1 by construction. 

 Let nj
# be the normal vector of the hyperplane defined by V# and let θs be the sth singular 

vector (eigenvector) of Θ .  I will now prove that nj
# = θs . 

By the definition of a plane: 

   V#nj
# = Jpc#                             (7) 

where Jp is a p by 1 vector of ones and c# is a constant.  Recall from equation (4) that 

                                               v  0ik
*

i=

p

1
∑ =    , k=1,...,s 

and therefore the p length eigenvectors of U in equation (5) must also sum to zero; that is; 

                                     u  0ik
i=

p

1
∑ =    , k=1,...,s 
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From which it follows that the columns of V# must also sum to zero: 

                                   v  0ik
#

i=

p

1
∑ =    , k=1,...,s 

Hence, by simply adding up all p elements of the vectors on either side of the equality in equation 

(7) it must be the case that c# = 0.  Therefore, equation (7) can be rewritten as 

UΛ#Θ′nj
# = 0p                                  (8) 

where 0p is a p length vector of zeroes.  Let Λ#-1 be an s by s diagonal matrix with diagonal 

entries that are the reciprocals of the non-zero diagonal entries of Λ# . Multiplying both sides of 

equation (8) by Λ#-1U′ 

Λ#-1U′UΛ#Θ′nj
# = Λ#-1U′0p 

this reduces to 

   Θ*′nj
# = 0s 

where 0s is an s length vector of zeroes, and Θ* is identical to Θ except the sth column of Θ* is 

all zeroes (hence, the sth row of Θ*′ is all zeroes).  Now, nj
# cannot be a vector of zeroes since, 

by definition, nj
#′ nj

# = 1.  Hence, nj
# = θs is a solution for equation (8). 

 In sum, calculating the optimal nj consists of the following steps: 

1)  Obtain a starting estimate of nj* using ordinary least squares. 

2)  Calculate the correct classifications associated with nj* . 

3)  Construct V* using equations (3) and (4). 

4)  Perform singular value decomposition of V*, UΛΘ′ . 

5)  Use the sth singular vector of Θ , θs , as the new estimate of nj . 

6)  Go to (2). 
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 In a perfect case like that shown in Figure 3, this cutting plane procedure will almost 

always iterate into the true cutting plane.  Panels D and E show the process after the 10th and 

35th iterations through steps (2) - (5) above.   

I say “almost always” because, with perfect data, the rate of convergence is a function of 

the number of errors.  As the number of errors decreases, the mass of the correctly classified 

choices increases thereby producing very small changes in the newly estimated normal vectors.  

This can be seen by comparing panels C and D with panels D and E.  Indeed, given the right sort 

of configuration, the convergence can become so slow that it literally gets “lost” in the precision 

of the computer.  Consequently, I have experimented with a number of simple fixes – for 

example, local grid searches as well as weighting the error so as to speed convergence.  

However, the basic procedure is so robust that I will limit my Monte-Carlo reports below to it 

alone so that the reader will have a clear idea of how well it works “barefoot” without any 

enhancements.   

 Table 1 shows a Monte-Carlo study of the cutting plane procedure using perfect data for 

100 legislators and 500 roll calls for 2 through 10 dimensions.  Results for one dimension are 

not shown since correct classification will always be 100% if perfect data is used.  The 100 

legislators and 500 normal vectors were randomly drawn from a uniform distribution through the 

unit hypersphere.  The cutting points along the projection line were also randomly drawn but in 

such a way so as to produce an average majority margin of about 62 percent (typical of 

congressional roll call data).4  A maximum of 100 iterations through steps (2) - (5) above were 

allowed. 
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Table 1 

Monte-Carlo Tests of Cutting Plane Procedure 
100 Legislators and 500 Votes 

Number of 
Dimensions 

Trials Average 
Majority Margina 

Average 
Number of 

Errorsb 

Average Percent 
Correctly 
Classifiedc 

 
2 

 
10 

 
61.1 

 
8.9 

 
99.98 

 
3 

 
10 

 
62.2 

 
16.8 

 
99.97 

 
4 

 
10 

 
61.9 

 
12.5 

 
99.98 

 
5 

 
10 

 
62.2 

 
16.7 

 
99.97 

 
6 

 
10 

 
63.1 

 
18.9 

 
99.96 

 
7 

 
10 

 
62.5 

 
17.7 

 
99.96 

 
8 

 
10 

 
62.8 

 
15.1 

 
99.97 

 
9 

 
10 

 
62.8 

 
14.0 

 
99.97 

 
10 

 
10 

 
62.8 

 
13.2 

 
99.97 

 
a Average margin across all 10 trials or 5000 total votes. 

b Average across all 10 trials. 

c Average across all 10 trials or 500,000 total choices. 

 

 The cutting plane procedure performs very well.  The number of dimensions does not 

appear to play any role in the accuracy of the procedure.  For example, for the ten trials in 10 

dimensions, the 5000 total estimated nj*’s correctly classified 499,868 of 500,000 choices (99.97 

percent).  As I noted above, this accuracy rate is a baseline; it can be further improved with local 

searches and other enhancements. 
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When error is present the cutting plane procedure converges very quickly.  In this context 

I am using “error” in a very artificial sense because I have not stated any behavioral model of the 

legislators.  It simply means that, given a legislator configuration and an observed pattern of 

yea’s and nay’s, find the cutting plane that maximizes correct classification.  The pattern might 

be produced by a probabilistic model of legislator voting or it might be a lower space projection 

of perfect voting in a higher dimensional space.  An  example is shown in Figure 4 which uses 

the same configuration of legislator ideal points as Figure 3.  The choices of 78 of the 435 

legislators have been modified so that they are “errors” – “N’s” on the “Y” side of the true 

cutting line and “Y’s” on the “N” side of the true cutting line.  The cutting plane procedure 

converges on the 30th iteration as shown in Panel D.  As shown by Panels B and C, in the error 

case the converged cutting plane may not be the one that maximizes classification – however, it 

will invariably be very close to the optimal cutting plane.  This is easily dealt with by simply 

storing the iteration record and using the normal vector corresponding to the best classification.  

This works very well in practice. 
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 3.c.  The Relationship of the Cutting Plane Procedure to Probit Analysis 

 Given a simple two category dependent variable and a set of fixed independent variables, 

the cutting plane procedure can be used to estimate a vector of coefficients for the independent 

variables that maximizes correct classification of the dependent variable.  In this instance, with 

the independent variables scaled so as to lie within a unit hypersphere, the normal vector, nj*, 
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produced by the cutting plane procedure, plays the role of the coefficient vector, β, in a standard 

probit, logit, or linear probability analysis. 

 In order to study the relationship between the cutting plane procedure and a standard 

probit analysis, I performed a Monte-Carlo study in which I created artificial data that fit the 

model:  

 y* = Xβ + ε  

where X is a p by s matrix of randomly generated independent variables scaled so as to be within 

a unit hypersphere;5 β is a randomly generated s length vector of coefficients with β′β = 1;6 ε is 

a p length vector of error terms; and y* is the unobserved latent dependent variable.  The 

categorical dependent variable, y , was created by picking a cutpoint on y* and defining all 

observations above the cutpoint as one category and all observations below the cutpoint as the 

second category.  I then analyzed X and y with probit and the cutting plane procedure.  A 

portion of the study is shown in Table 2. 
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Table 2 

Monte-Carlo Comparison of Cutting Plane Procedure 
and Probit Analysis 

Normally Distributed Error (σ=.2):  p=100  

Number 
Variables 

(s) 

True 
Margin 

Correlation 
Probit With 

True 

Correlation  
Cutting Plane 

With True 

Correlation 
Cutting Plane 
With Probit 

Probit Percent 
Correctly 
Classified 

Cutting Plane 
Correctly 
Classified 

 
10 

 
50-50 

 
.946 

 
.949 

 
.995 

 
85 

 
87.9 

 
10 

 
20-80 

 
.924 

 
.913 

 
.989 

 
88.3 

 
90.3 

 
5 

 
50-50 

 
.985 

 
.979 

 
.997 

 
85.3 

 
87.8 

 
Uniformly Distributed Error:  p=100  

 
10 50-50 .824 .825 .996 72.3 75.4 

 
10 

 
20-80 

 
.564 

 
.579 

 
.991 

 
72.4 

 
75.0 

 
5 

 
50-50 

 
.917 

 
.912 

 
.997 

 
72.8 

 
75.8 

 
Asymmetric Error:  p=100 and s=10 

True 
Margin 

Type of 
Error 

Correlation 
Probit With 

True 

Correlation  
Cutting Plane 

With True 

Correlation 
Cutting Plane 
With Probit 

Probit Percent 
Correctly 
Classified 

Cutting Plane 
Correctly 
Classified 

 
50-50 

 
Chi-Square 

 
.913 

 
.920 

 
.992 

 
86.6 

 
89.7 

 
50-50 

 
Bi-Modal 

 
.778 

 
.796 

 
.997 

 
75.2 

 
78.4 

 
20-80 

 
Error Near 

End 

 
.779 

 
.863 

 
.983 

 
85.2 

 
90.0 

 
 
 Table 2 shows three sets of experiments using normal, uniform, and asymmetric error, 

respectively.  All entries are the average of 10 trials.  In the first portion of the Table the 

number of independent variables was set equal to either 5 or 10 (s=5 or s=10) with 100 

observations (p=100).  The randomly drawn β -- the normal vector – was used to create the true 
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latent dimension and a cutpoint was selected so that the true margin was 50-50.  Normal random 

error was then drawn and added to Xβ to get the noisy latent dimension and the categories were 

adjusted vis a vis the true cutpoint.  The column “True Margin” is the margin before the addition 

of the error.  The next three columns of the Table report the Pearson correlations between: the 

true β and the vector of coefficients from the Probit analysis; the true β and the estimated normal 

vector, nj* , from the cutting plane procedure; and the Probit coefficients and nj* .  Finally, the 

last two columns show the percent correct classifications of Probit and the cutting plane 

procedure, respectively.7 

 With normally distributed and uniformly distributed error the non-parametric cutting 

plane procedure recovers essentially the same set of coefficients as Probit.  This seems sensible 

in that as long as the underlying error distribution is symmetric so that the frequency of error 

diminishes with distance from the cutting plane, then the cutting plane procedure should produce 

results very similar to those of a parametric procedure like Probit.   

The last set of results shown in Table 2 are those for three asymmetric error distributions:  

chi-square with one degree of freedom; a bimodal distribution where the frequency of error peaks 

midway between the cutpoint and the ends of the dimension; and one in which the error is 

clustered near only one end of the dimension.  Even though the two procedures are recovering 

similar vectors, when the error distribution is not normal and not symmetric, the cutting plane 

procedure comes closer to recovering the true vector of coefficients than does Probit.   

 Table 3 shows an empirical comparison of the cutting plane procedure and Probit 

analysis.  The sample is 231 Republican members of the House of Representatives8 and the 

dependent variable is whether or not they signed up as co-sponsors of a minimum wage 

increase.9  The independent variables measure the liberalness of the representative (the 
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NOMINATE scores; see Poole and Rosenthal, 1991, 1997, for details) and some characteristics 

of representative’s congressional district (percent rural, percent Black, and median family 

income).  (The independent variables were put in standard deviation form to facilitate 

comparisons.)  The standardized Probit coefficients and the cutting plane coefficients are very 

close – the simple Pearson correlation is .961.  Substantively, the coefficients in Table 3 indicate 

that Republican moderates from poorer, urban districts support raising the minimum wage. 
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Table 3 

 
Empirical Comparison of Probit and Cutting Plane Procedure 

22 Republican Defectors on Minimum Wage:  April 1996 
 

Dependent Variable = 1 if Support Raising Minimum Wage; 0 if Oppose 
Independent Variables Expressed in Standard Deviation Form 
Margin  22 - 209 

 
Variable Probit 

Coefficient 
Standardized 

Probit 
Coefficientsd 

T-Value Cutting Plane 
Coefficients  

Boot-Strapped 
T-Valuese 

Constant 
 
 

1.722 --- 9.253 --- --- 

NOMINATEa 
1st Dimension 

 

12.211 .911 3.508 .876 3.681 

NOMINATEa 
2nd Dimension 

 

0.785 .059 0.266 .266 .767 

Ruralb 
 
 

4.157 .310 1.922 .338 2.113 

Blackb 
 
 

0.337 .025 0.175 .051 .338 

Median  
Incomec 

 

3.568 .266 1.436 .212 .964 

 
 Probit Log Likelihood = -54.101 
 Percent Correctly Classified By Probit = 90.9 (210 of 231) 
 Percent Correctly Classified By Cutting Plane Procedure = 91.8 (212 of 231) 
 Correlation Between Cutting Plane Coefficients and Standardized  
  Probit Coefficients = .961 
________________________________________________________________________ 
a Unadjusted NOMINATE scores range from -1.0 to +1.0  
b Unadjusted data expressed as a percentage  
c Unadjusted data expressed in dollars  
d The sum of the squared coefficients equals 1 
e Based upon 100 trials  
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 In order to obtain standard errors for the cutting plane procedure, I performed a simple 

bootstrap analysis.10  The standard errors were then used to obtain the reported “t-values”.  

Note that the pattern of significance for the non-parametric cutting plane coefficients is the same 

as that for the Probit coefficients.  Monte-Carlo work with artificial data suggests that the cutting 

plane coefficients will have nearly identical patterns of significance (using bootstrapping) with 

those produced by a Probit analysis when the underlying error distribution is symmetric. 

 

 3.d.  Conjecture on the Relationship of the Cutting Plane Procedure to  
  Ordered Probit and Multi-Choice Analysis 
  

 I conjecture that the cutting plane procedure is easily generalized to the case of ordered 

Probit.  The only modification necessary is to change the way correct classifications are counted.  

For example, suppose there are four categories – y, n, a, b – and the order is y > n > a > b (or its 

mirror image).  Given an estimate of the normal vector, nj*, the problem is to find three parallel 

cutting planes that divide the space into four regions so as to maximize the correct classifications.  

This can be solved using a modification of the classification procedure shown in Section 3.a. 

 To illustrate, consider one of the intermediate categories, “n”.  Given the projection line, 

equation (1), the problem now is to find two cutpoints rather than one.  Lump the other three 

categories – y, a, b – into a non-“n” category.  Denote the non-“n” category as “c”.  Using the 

same logic discussed is Section 3.a, search all the patterns of the form: 

  cnnnn…nnccccccccc 
  ccnnn…nnccccccccc 
  cccnn…nnccccccccc 
         etc. 
  ccccc…cccccnnnccc 
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         etc. 
 
Given the restriction that there must be at least one “c” to the left of the left-most “n” and at least 

two “c”s to the right of the right-most “n”, and at least one “n”, then there are exactly p - 2
2







  

possible pairs of cutpoints which define p - 2
2







  possible patterns of “c”s and “n”s.  Given these 

two cutpoints, the simple one point procedure can be used to find the last cutpoint. 

 Because the three cutting planes are parallel and have the same normal vector, the 

correctly classified observations can be projected onto a “common” plane which is placed 

through the origin of the space rather than through the cutpoint, c*, as shown in equation (3).  

The errors are then translated so that they are the same distance and orientation from the 

“common” plane as the plane for which they are an error. 

 In a multiple choice context where there is no natural ordering of the choices, the 

parametric approach consists of estimating separate probabilities for each of the choices utilizing 

a common set of independent variables.  For example, in the 1980 U. S. presidential election 

there were four choices – Reagan, Carter, Anderson, and not-voting.  The probability that an 

eligible voter voted for Reagan is the product of the conditional probability that, given the person 

decides to vote, she votes for Reagan times the probability that she votes.  Using a logit model, 

three vectors of coefficients will be estimated – one for the vote/not-vote decision, and two for 

the candidate choices (only two are needed since probabilities add to one).11 

Because the probability of making a choice rises in the direction of the coefficient vector, 

in terms of the cutting plane procedure, this is equivalent to estimating three normal vectors – 

one for the binary choice vote/not-vote; and two for the voters, one for the binary choice 

Reagan/not-Reagan; and one for the binary choice Anderson/not-Anderson (using Carter as the 
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omitted choice).  Geometrically this approach is possible because, from some interior point 

outward along a vector from the origin, there should be only one choice.  However, the cutting 

plane procedure is linear – that is, it uses straight cuts to divide up the hypersphere when curved 

boundaries between the choice regions may be more appropriate because the hypersphere must 

be divided into mutually exclusive regions.  Consequently, the cutting plane procedure should 

not do as well in this context as it should with ordered Probit.  Nevertheless, it should provide a 

very useful benchmark for comparison with parametric methods. 

4.  Finding the Optimal Legislator Coordinates 

 Given the q by s matrix, N, of normal vectors and the q by 1 vector of votes of the ith 

legislator, ti, the problem is to find the legislator point, xi, which minimizes the classification 

error.  Figure 5 shows an example in two dimensions. 
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 Figure 5 shows five cutting lines indicated by the numbering at the rim of the circle.  The 

“Y” and “N” on either side of each cutting line indicates how a legislator on that side of the 

cutting line should vote – “yea” or “nay” respectively.  The five cutting lines divide up the space 

into 13 regions and each of these 13 regions can be characterized by a unique vector of votes.  

The voting patterns for several regions are shown in the figure.  For example, the region near the 

center of the circle containing the point “A” corresponds to a voting pattern of yyynn.   

 Given a legislator’s pattern of votes, in this case nnnyn (technically, ti′ = [nnnyn]), the 

problem is to find the region in Figure 5 that maximizes the correct classification.  In this 

example the point “C” is located in the region corresponding to perfect classification.  Suppose 

the initial estimate of the legislator’s coordinates is at the origin, point “A” in the Figure.  This 
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initial estimate is very poor as it only correctly classifies one of the five votes.  The problem is to 

move the point representing the legislator in a direction that increases the number of correct 

classifications.   

Below I show a method for finding the maximum classification point along any arbitrary 

line passing through the space.  This method is used to move the legislator point through the 

space in a city-block fashion by searching along a line parallel to the first dimension and then 

solving for the point along this line which maximizes classification.  Then the legislator point is 

moved along a line through this new point but parallel to the second dimension.  This is done for 

each dimension in turn and can be repeated as many times as desired.  This always converges to 

a point for which the coordinates are at a local maximum in terms of classification.  That is, the 

point cannot be moved parallel to any dimension and have the correct classifications increase. 

 Let xi
(h) be the initial estimate for legislator i where “h” is the iteration number (1, 2, 3, 

etc.) and let xi
(a) be a second point.  The problem is to find a new estimate, xi

(h+1), on the line 

passing through xi
(h) and xi

(a) which increases correct classification.  Using equation (1), the 

projection of xi
(h) onto the jth normal vector is: 

xi
(h)′nj = wij

(h)                            (9) 

Similarly, the projection of the second point onto the jth normal vector is wij
(a).  These 

projections correspond to a correct classification on roll call j depending upon which side of the 

cutpoint, cj, they fall.  There are six possible orderings of wij
(h), wij

(a), and cj.  For each ordering 

there are two possible classification outcomes for a total of 12 cases.  Table 4 shows each case. 
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Table 4 

                                                               
Case         Ordering        Classification  Limits of α That Correctly 
                                 h     a             Project xi(h+1) 
________________________________________________________________________ 

1.  -1 < cj < wij(h) < wij(a) < +1   C1    C   
c  -  w

w  -  w
 <   <  

1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

2.  -1 < cj < wij(h) < wij(a) < +1   I     I   
-1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

3.  -1 < cj < wij(a) < wij(h) < +1   C     C   
1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

4.  -1 < cj < wij(a) < wij(h) < +1   I     I   
c  -  w

w  -  w
 <   <  

-1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

5.  -1 < wij(h) < wij(a) < cj < +1   C     C   
-1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

6.  -1 < wij(h) < wij(a) < cj < +1   I     I   
c  -  w

w  -  w
 <   <  

1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

7.  -1 < wij(a) < wij(h) < cj < +1   C     C   
c  -  w

w  -  w
 <   <  

-1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

8.  -1 < wij(a) < wij(h) < cj < +1   I     I   
1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

9.  -1 < wij(h) < cj < wij(a) < +1   C     I   
-1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

10. -1 < wij(h) < cj < wij(a) < +1   I     C   
c  -  w

w  -  w
 <   <  

1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

11. -1 < wij(a) < cj < wij(h) < +1   C     I   
1 -  w

w  -  w
 <   <  

c  -  w
w  -  w

ij
(h)

ij
(a)

ij
(h) j

j ij
(h)

ij
(a)

ij
(h)α  

12. -1 < wij(a) < cj < wij(h) < +1   I     C   
c  -  w

w  -  w
 <   <  

-1 -  w
w  -  w

j ij
(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α  

________________________________________________________________________ 
 
1 “C” is correctly classified; “I” is incorrectly classified. 
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 For example, in case 1 both xi
(h) and xi

(a) project to the right of cj and are on the correct 

side of the cutting plane for the jth roll call and are therefore correctly classified.  Case 2 is the 

same geometrically only now xi
(h) and xi

(a) are on the wrong side of the cutting plane and are 

therefore projected as classification errors.  Cases 1 to 8 represent no change in classification 

from moving the legislator point from xi
(h) to xi

(a).  For xi
(a) to be an improvement over xi

(h) , the 

number of cases 10 and 12 must be greater than the number of cases 9 and 11.   

 Consider the effect of moving xi
(a) further from xi

(h) .  This has no effect on cases 1, 2, 

and 7 - 12.  Only those cases where xi
(a) is between xi

(h) and cj – cases 3, 4, 5, and 6 – are 

affected.  Depending upon how far xi
(a) is moved away from xi

(h) , case 3 could change to case 11 

increasing the error by one, case 5 could change to case 9 also increasing the error by one, case 4 

could change to case 12 decreasing the error by one, and case 6 could change to case 10 also 

decreasing the error by one.  A similar analysis of the effect of moving xi
(a) towards xi

(h) can also 

be done.   

More generally, consider the line equation: 

xi
(h+1) = xi

(h) + α(xi
(a) - xi

(h) )                             (10) 

which, when projected onto the jth normal vector, becomes: 

wij
(h+1) = wij

(h) + α(wij
(a) - wij

(h) )                         (11) 

For a single roll call, it is easy to solve for α; these are shown in Table 4 for all 12 cases.  For 

example, for case 2, α must be chosen so that the projection of xi
(h+1) , wij

(h+1) , is in the region 

(-1, cj ).   

 Given xi
(h) and xi

(a) , Table 4 can be used to find the limits of α for each roll call.  Let the 

upper and lower limits for the jth roll call be Uij and Lij respectively.  The correct classification 

associated with xi
(h) can be obtained by setting α=0 and counting the number of roll calls for 
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which 0 ∈ (Lij , Uij ).  Similarly, the correct classification associated with xi
(a) is obtained by 

setting α=1 and counting the number of roll calls for which 1 ∈ (Lij , Uij).  In general, define 

δij = 1  if  α ∈ (Lij , Uij )   

δij = 0  if  α ∉ (Lij , Uij ) 

and the correct classification is simply 

δ(α) = δ ij
j=1

q

∑                                    (12) 

 The α that maximizes δ(α) , the number of correct classifications, can be calculated in a 

simple manner.  First, compute the Lij and Uij for each roll call.  Second, rank order the Lij and 

Uij and use the classification algorithm described in section 3.a above to calculate the optimal α.  

Here the Lij play the role of “y” and the Uij play the role of “n”.  For example, if there exists an α 

that results in perfect classification, the ordering of L’s and U’s will look like (dropping the i 

subscript to reduce clutter and numbering left to right for convenience): 

L1 < L2 < L3 < ... < Lq < U1 < U2 < U3 < ... < Uq  

that is, all the Lj will be less than all the Uj.  In this example, perfect classification, δ(α) = q , 

results from α ∈ (Lq , U1 ).  Table 5 shows a numerical example using the configuration of 5 

cutting lines shown in Figure 5. 
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Table 5 

Numerical Example From Figure 5 
 

Using   N = 

 .  
 .  
 .
 .
  

705 710
938 346
834 551
272 962
808 589

.

.
.
.

. .

−
−























   and   c = 

-.010
-.032
-.203
 .076
 .021























 

 
 

First Iteration:   Set  xi
(1) = 

0
0







    and   xi

(a) =  
0 01

0
.







     

 
 Lower Limits          Upper Limits 
 
 L1   -141.844             U1     -1.349 
 L2   -106.610             U2     -3.411 
 L3   -119.904             U3    -24.322 
 L4     28.010             U4    367.647 
 L5   -123.762             U5      2.649 
  
 Rank Order 
 
 L1 < L5 < L3 < L2 < U3 < U2 < U1 < U5 < L4 < U4  
  
 Correct Classifications 
 
 For xi

(1) , α = 0 ∈ (U1 , U5 )  and  δ(0) = 1 
 For xi

(a) , α = 1 ∈ (U1 , U5 )  and  δ(1) = 1 
 For xi

(2) = xi
(1) + α(xi

(a) - xi
(1) ) , α ∈ (L2 , U3 )  and  δ(α ∈ (L2 , U3 )) = 4 

  
 Compute xi

(2)   (Point “B” in Figure 5) 
 
 Set α = (L2 + U3 )/2 = (-106.610 + -24.322)/2 = -65.466  
 

xi
(2) = 0

0







  + (-65.466) 

0 01
0
.

























 -  
0
0   =  

−









.655
0
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Table 5 (Cont.) 
 
 
 

Second Iteration:   xi
(2) = 

-.655
0









    and   xi

(a) =  
−









.
.
655

0 01  

 
 Lower Limits          Upper Limits 
 
 L1    -75.841             U1     63.666 
 L2   -111.541             U2    168.231 
 L3    -62.276             U3     82.276 
 L4   -122.461             U4    -26.430 
 L5    -79.972             U5     93.441 
 
 Rank Order 
 
 L4 < L2 < L5 < L1 < L3 < U4 < U1 < U3 < U5 < U2  
 
 Correct Classifications 
 
 For xi

(2) , α = 0 ∈ (U4 , U1 )  and  δ(0) = 4 
 For xi

(a) , α = 1 ∈ (U4 , U1 )  and  δ(1) = 4 
 For xi

(3) = xi
(2) + α(xi

(a) - xi
(2) ) , α ∈ (L3 , U4 )  and  δ(α ∈ (L3 , U4 )) = 5 

 
 Compute xi

(3)  (Point “C” in Figure 5) 
 
 Set α = (L3 + U4 )/2 = (-62.276 + -26.230)/2 = -44.353  
 

New xi
(3) = 

−









.655
0  + (-44.353) 

−


























.
.
655

0 01  -  
-.655

0   =  
−
−










.

.
655
444  

 
 

 The starting estimate (h=1) xi
(1) , is placed at the origin – point “A” in Figure 5 – and the 

second point, xi
(a) , is placed just to the right of xi

(1) .  The upper and lower limits (computed 

from Table 4) along with their rank order are shown in the Table.  The rank ordering is almost a 

perfect pattern in that 4 of the lower limits are below the 5 upper limits; only L4 is wrongly 

placed producing one classification error.  Consequently, the point resulting from using α ∈ (L2 , 
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U3 ) , xi
(2) , point “B” in Figure 5, only has one classification error with 4 correct classifications.  

(In practice, α is set equal to the midpoint; in this case,(L2 + U3 )/2 .)  Note that in Figure 5 point 

“B” is on the wrong side of the cutting line for roll call 4 in the region associated with the pattern 

nnnnn. 

 For the second iteration, h=2, the starting estimate is xi
(2) and the second point, xi

(a), is 

placed just below xi
(2) so that the resulting line is parallel to the second dimension.  The upper 

and lower limits for the second iteration along with their rank order are shown in the Table.  The 

rank ordering is now a perfect pattern with all 5 lower limits below the 5 upper limits so that 

there are no classification errors.  The point resulting from using α ∈ (L3 , U4 ) , xi
(3) , point “C” 

in Figure 5, has 5 correct classifications and no classification error. 

 The search for the optimal xi is conducted in a city-block manner.  In the first iteration 

the search is along a line through the origin with all but the first dimension coordinates in xi
(1) 

and xi
(a) set to zero.  In the second iteration, the first dimension coordinates are all set equal to 

the value corresponding to the optimal first dimension value and the 3rd, 4th, …, sth dimensional 

coordinates in xi
(2) and xi

(a) are all set equal to zero.  The search is along the corresponding line 

through xi
(2) and xi

(a) which is orthogonal to the first dimension.  In the third iteration, the first 

and second dimension coordinates are set equal to the optimal values from the first and second 

iterations respectively, and the 4th, 5th, …, sth  dimensional coordinates in xi
(3) and xi

(a) are all set 

equal to zero.  The search is along the corresponding line through xi
(3) and xi

(a) which is 

orthogonal to the second dimension.  This process continues in the same fashion through the sth 

dimension.  Since the search for the optimal xi is being done city-block-wise, dimensions 1 to s 

can now be searched again.  

 In sum, calculating the optimal xi consists of the following steps: 
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1)  Obtain a realistic starting estimate, xi
(1)  (or set xi

(1) equal to the origin, 

that is, xi
(1) = 0 ). 

2)  Set xi
(a)′ = (0.01, xi2

(1) , xi3
(1) , xi4

(1) , xi5
(1) , … , xis

(1) ) , find optimal α and xi
(2) 

= xi
(1) + α(xi

(a) - xi
(1) )   . 

3)  Set xi
(a)′ = (xi1

(2) , 0.01, xi3
(1) , xi4

(1) , xi5
(1) , … , xis

(1) ) , find optimal α and xi
(3) 

= xi
(2) + α(xi

(a) - xi
(2) ). 

4)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , 0.01, xi4

(1) , xi5
(1) , … , xis

(1) ) , find optimal α and xi
(4) 

= xi
(3) + α(xi

(a) - xi
(3) ). 

5)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , xi3

(4) , 0.01, xi5
(1) , … , xis

(1) ) , find optimal α and xi
(5) 

= xi
(4) + α(xi

(a) - xi
(4) ). 

etc. 

s+1)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , xi3

(4) , xi4
(5) , … , xis-1

(s) , 0.01) , find optimal 

α and xi
(s+1) = xi

(s) + α(xi
(a) - xi

(s) ). 

s+2)  Go to (2). 

 Note that classification error can never increase from one step to the next.  This is true 

because setting α = 0 preserves the current value of classification.  This process converges very 

quickly (usually less than 10 iterations through steps 2 to s+1 above) to a vector of coordinates 

which is a local maximum in terms of classification.  That is, it converges to a point such that α 

= 0 for all s dimensions.  

 In practice, the starting estimate, xi
(1) , and the second point, xi

(a) , could be placed 

anywhere within the s dimensional unit hypersphere.  In practical applications the starting 

estimate will not be at the origin; rather, realistic starting estimates for the xi
(1)‘s will be 
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generated by a least squares procedure such as eigenvector/eigenvector decomposition or OLS 

(see Section 5 below).  If the line through xi
(h) and xi

(a) is parallel to a cutting line then the 

corresponding difference between wij
(a) and wij

(h) , wij
(a) - wij

(h) , which is used in Table 4 to find 

αj, may be equal to zero.  This presents no problem since if the line through xi
(h) and xi

(a) is 

parallel to a cutting line then the classification on that roll call is the same no matter where on the 

line xi
(h+1) is located.  Consequently, the roll call is not used to locate xi

(h+1) .  In addition, if the 

line through wij
(a) and wij

(h) goes through the hypersphere so that it never intersects a cutting 

plane this can result in a value of αj that produces a point that lies outside the unit hypersphere.  

This is easily handled by computing the upper and lower feasible limits of xi
(h+1) – that is, the 

values corresponding to the two exit points of the line from the unit hypersphere – and discarding 

all the corresponding Lij and Uij .  This requires some bookkeeping but it has no effect on the 

search process.  Finally, the search process does not have to be done by moving orthogonally 

(i.e., city-block-wise) through the hypersphere.  However, I found it to be the most efficient way 

to proceed. 

To guard against local maxima, I utilize multiple starting points for the xi
(1)‘s.  If 

different solutions are found, I then search along the lines joining the unique local maxima for 

the best solution.  After considerable experimentation, I found that 3 starting points work very 

well in practice.  One starting point is generated from a least squares procedure and the other 

two are randomly generated. 

 Table 6 shows a Monte-Carlo study of the legislator procedure using perfect data – the 

true cutting planes are known -- for 100 legislators and 500 roll calls in 2 through 10 dimensions.  

In order to make the test of the legislator procedure reasonably stringent, I use only 

“unreasonable” starting points – namely, the origin and two randomly generated points are used 
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for the three starting points.  Results for one dimension are not shown since classification will 

always be 100% if perfect data is used.  The 100 legislators and 500 normal vectors were 

randomly drawn from a uniform distribution through the unit hypersphere.  The cutting points 

along the projection line were also randomly drawn but in such a way so as to produce an average 

majority margin of about 62 percent (typical of congressional roll call data).12  A maximum of 

15 iterations through steps (2) - (s+1) above were allowed. 

Table 6 

Monte-Carlo Tests of Legislator Procedure 
100 Legislators and 500 Votes 

Number of 
Dimensions 

Trials Average 
Number of 

Errorsa 

Average Percent 
Correctly 
Classifiedb 

Average 
Correlation True  
vs. Reproducedc 

 
2 

 
10 

 
0 

 
100.00 

 
.982 

 
3 

 
10 

 
.7 

 
99.999 

 
.991 

 
4 

 
10 

 
.7 

 
99.999 

 
.989 

 
5 

 
10 

 
3.2 

 
99.999 

 
.991 

 
6 

 
10 

 
5.6 

 
99.99 

 
.987 

 
7 

 
10 

 
9.9 

 
99.98 

 
.988 

 
8 

 
10 

 
19.5 

 
99.96 

 
.985 

 
9 

 
10 

 
24.8 

 
99.95 

 
.980 

 
10 

 
10 

 
45.6 

 
99.91 

 
.978 

 
a Average across all 10 trials. 
b Average across all 10 trials or 500,000 total choices. 
c The Pearson Correlation is computed between the 4950 unique legislator pair-wise  

distances (100x99/2).  The number in the Table is the average across all 10 trials. 
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 The legislator procedure works very well – especially at 7 dimensions and below.  There 

is some deterioration in accuracy at 10 dimensions but it still only makes an average of 46 

misclassifications out of 50,000 total choices.  For 5 dimensions and below it is practically 

perfect.  Table 6 also shows the Pearson correlation between the true configuration of legislators 

and the reproduced configuration.  These correlations are very high.  Even though the legislator 

procedure is non-parametric, with 500 roll call cutting planes, the unit hypersphere is chopped up 

into enough regions that, in effect, metric (i.e., ratio scale) information is being extracted from 

the roll call matrix. 

 

5.  Non-Parametric Unfolding of Binary Choice Matrices 

 To restate the problem, given a p by q matrix of binary choice data, T, the classification 

problem consists of finding a set of legislator points in an Euclidean space of s dimensions – the 

p by s matrix X -- and a set of cutting planes  -- the q by s matrix, N, of normal vectors -- such 

that the predicted choices match the actual choices as closely as possible.  To unfold the choice 

matrix, T, into the legislator coordinates and roll call cutting planes, requires a solution for two 

subproblems:  given X, find the optimal N; and given N, find the optimal X.  Sections 3 and 4 

show solutions for these two subproblems.  I now link them together to unfold binary choice 

matrices.  In this section I show the algorithm and Monte-Carlo tests, and in Section 6 I show 

empirical examples of the algorithm. 

 The non-parametric unfolding algorithm consists of three phases:   

1)  Generate starting values for X, X*, from an eigenvalue/eigenvector decomposition of 

the legislator by legislator agreement score matrix. 

2)  Given X*, find the optimal estimate of N, N*. 
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3)  Given N*, find the optimal X*. 

4)  Go to (2). 

 Starting values for X are easily generated from an agreement score matrix.  The 

agreement score for a pair of legislators is simply the ratio of the number of roll calls on which 

they voted for the same alternative (Yea and Yea, or Nay and Nay), divided by the total number 

of roll calls on which they both voted.  This score – which ranges from 0 to 1 -- can be treated as 

an inverse distance – the higher the agreement score the smaller the distance between the pair of 

legislators.  By subtracting the agreement score from 1.0 and squaring the result, the transformed 

agreement scores can be treated as squared distances.  Double centering this matrix of squared 

distances – that is, from each element of the matrix subtract the row mean, subtract the column 

mean, and add the matrix mean – produces a cross product matrix which can be decomposed to 

yield an estimate of the legislator coordinates, X* (Young and Householder, 1938; Ross and 

Cliff, 1964). 

 Table 7 shows a Monte-Carlo study of the non-parametric unfolding algorithm using 

perfect data for 100 legislators and 500 roll calls in 1 through 10 dimensions.  Only roll calls 

with margins of 97-3 to 50-50 were used because unanimous and near-unanimous roll calls 

trivially inflate the number of correct classifications.13  A maximum of 25 iterations through 

steps (2) and (3) above were allowed.  I show results for one dimension because I do not have a 

proof that, with perfect data, the algorithm will always converge to the true ordering of legislators 

and roll call midpoints.  With perfect data, given the true ordering of legislators, the true 

midpoints are always found; and given the true ordering of midpoints, the true ordering of the 

legislators is always found.  For the algorithm to not converge to the true joint ordering of 

legislators and midpoints, it must be the case that there exists a local maximum in classification.  
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That is, an ordering of legislators not equal to the true ordering and an ordering of midpoints not 

equal to the true ordering, both of which reproduce each other.  Such local maxima appear to be 

very rare.14 

Table 7 

Monte-Carlo Tests:  Non-Parametric Unfolding of Binary Choice Matrices 
100 Legislators and 500 Votes (25 Iterations) 

Number of 
Dimensions 

Trials Average 
Majority 
Margina 

Average 
Number of 

Errorsb 

Average Percent 
Correctly 
Classifiedc 

Average 
Correlation 

True vs  
Reproducedd,e 

 
1 

 
10 

 
60.3 

 
0 

 
100.00 

 
1.000 

 
2 

 
10 

 
61.3 

 
27.5 

 
99.95 

 
.929 

 
3 

 
10 

 
62.1 

 
21.0 

 
99.96 

 
.961 

 
4 

 
10 

 
62.4 

 
16.5 

 
99.97 

 
.953 

 
5 

 
10 

 
62.6 

 
16.0 

 
99.97 

 
.943 

 
6 

 
10 

 
63.0 

 
11.5 

 
99.98 

 
.923 

 
7 

 
10 

 
62.7 

 
16.5 

 
99.97 

 
.913 

 
8 

 
10 

 
62.7 

 
14.5 

 
99.97 

 
.889 

 
9 

 
10 

 
62.8 

 
16.0 

 
99.97 

 
.882 

 
10 

 
10 

 
62.8 

 
13.0 

 
99.97 

 
.867 

 
a Average margin across all 10 trials or 5000 total votes. 
b Average across all 10 trials. 
c Average across all 10 trials or 500,000 total choices. 
d For s=1, the Spearman Rank Correlation is computed between the 100 true and reproduced 
legislator ranks. The number in the Table is the average across all 10 trials. 
e For s > 1 the Pearson Correlation is computed between the 4950 unique legislator pair-wise 
distances (100x99/2).  The number in the Table is the average across all10 trials. 
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 The algorithm works well regardless of the number of dimensions.  The worst result is 

for two dimensions where, on average, about 28 of 50,000 choices were misclassified.  The 

accuracy of the recovery of the true configuration of legislators declines after 3 dimensions.  

This is to be expected given that the number of roll call cutting planes is fixed.  Simply put, as 

the number of dimensions is increased, ceteris paribus, there is somewhat more “wiggle room” 

for the legislator points.  However, this statistic – the correlation between the true and 

reproduced distances between pairs of legislators -- over-states the decline in accuracy because, if 

a handful of points are recovered some distance from their true location, their distances to the 

remaining points will deflate the correlation disproportionately.  Figure 6 illustrates this point. 
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 The top panel of Figure 6 shows the first 35 true legislator points of one of the 

two-dimensional trials from Table 7 and the bottom panel shows their recovered locations.15  

(Only the first 35 are shown in order to reduce clutter.)  The correlation between the 4950 

unique legislator pair-wise true and reproduced distances is .928.  However, the Pearson 

correlations between the 100 legislator positions on the corresponding first dimension is .967 and 
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for the second dimension the correlation is .989.  The reason why the separate dimension 

correlations are higher than the pair-wise distance correlation can be seen in Figure 6.  Note that 

true points 7, 1, and 33 are near the rim of the circle but are recovered somewhat to the interior.  

However, the relative placement of all the points in the recovered configuration is very close to 

the true.  This distortion of the points near the rim has a greater impact on the distance 

correlation than it does on the dimension correlations. 

 Given the history of other multidimensional scaling techniques, most empirical 

applications of the non-parametric unfolding technique I show here will be to data matrices with 

missing entries and the estimated configurations will be in three or fewer dimensions.16  Missing 

data presents no problem for the algorithm.  In the cutting plane procedure it simply means that 

the total number of legislators may vary from vote to vote.  In the legislator procedure it simply 

means that the number of cutting lines may vary from legislator to legislator.  Handling missing 

data requires a little bookkeeping but it has no effect on the algorithm. 

 Table 8 shows a set of experiments with binary choice data with and without error at 

various levels of missing data.  Configurations of 100 legislators and 500 roll calls in 2 and 3 

dimensions were randomly generated in the same fashion as those used in the Monte-Carlo 

experiments shown in Table 7.  Error was introduced into the choices by making them 

probabilistic where the probability of making a correct choice increases with distance from the 

cutting plane.17  An error level of about 22 percent was chosen because that is the approximate 

level of error in U.S. congressional roll call data.  Entries were randomly removed and the 

remaining entries were then analyzed by the algorithm in one through five dimensions.18  The 

upper part of Table 8 shows two-dimensional experiments at four different levels of missing data 

with and without error, and the lower part shows three-dimensional experiments.  Each 
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randomly produced matrix was analyzed at each level of missing data so that the same 10 

matrices for two or three dimensions (with varying levels of missing entries) are being averaged 

in each row of the upper or lower parts of the Table. 
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Table 8 

Monte-Carlo Tests:  Non-Parametric Unfolding of Binary Choice  
Matrices With Missing Data 

(Each Entry Average of 10 Trials, 15 Iterations Per Trial) 
 

2 Dimensions, 100 Legislators, 500 Votes 
 

Percent 
Missing 

Average 
Percent 
Error 

Average 
Majority 
Margin 

Percent 
Correct 
1 Dim. 

Percent 
Correct 
2 Dim. 

Percent 
Correct 
3 Dim. 

Percent 
Correct 
4 Dim 

Percent 
Correct 
5 Dim. 

 
R 

All 

 
R 
1st 

 
R 
2nd 

 
0 

 
0 

 
61.7 

 
90.1 

 
99.9 

 
100.0 

 
100.0 

 
100.0 

 
.942 

 
.982 

 
.982 

 
20 

 
0 

 
62.2 

 
90.3 

 
99.9 

 
100.0 

 
100.0 

 
100.0 

 
.943 

 
.985 

 
.982 

 
50 

 
0 

 
62.6 

 
90.1 

 
99.9 

 
100.0 

 
100.0 

 
100.0 

 
.932 

 
.982 

 
.978 

 
70 

 
0 

 
64.1 

 
90.5 

 
99.8 

 
99.9 

 
100.0 

 
100.0 

 
.903 

 
.974 

 
.966 

 
0 

 
21.1 

 
61.1 

 
77.0 

 
82.3 

 
83.0 

 
83.6 

 
84.2 

 
.940 

 
.983 

 
.982 

 
20 

 
21.1 

 
61.5 

 
77.5 

 
83.0 

 
83.6 

 
84.3 

 
85.0 

 
.936 

 
.981 

 
.980 

 
50 

 
21.1 

 
62.3 

 
78.4 

 
84.2 

 
85.3 

 
86.2 

 
86.9 

 
.922 

 
.976 

 
.973 

 
70 

 
21.1 

 
63.6 

 
79.6 

 
86.1 

 
87.6 

 
88.9 

 
90.1 

 
.888 

 
.963 

 
.961 

 
3 Dimensions, 100 Legislators, 500 Votes 

 
Percent 
Missing 

Average 
Percent 
Error 

Average 
Majority 
Margin 

Percent 
Correct 
1 Dim. 

Percent 
Correct 
2 Dim. 

Percent 
Correct 
3 Dim. 

Percent 
Correct 
4 Dim 

Percent 
Correct 
5 Dim. 

 
R 

All 

 
R  
1st 

 
R 
2nd 

 
R  
3rd 

 
0 

 
0 

 
62.2 

 
84.1 

 
91.5 

 
99.9 

 
100.0 

 
100.0 

 
.958 

 
.992 

 
.992 

 
.990 

 
20 

 
0 

 
62.5 

 
84.3 

 
91.5 

 
99.9 

 
100.0 

 
100.0 

 
.937 

 
.990 

 
.991 

 
.988 

 
50 

 
0 

 
63.0 

 
84.6 

 
91.8 

 
99.8 

 
99.9 

 
100.0 

 
.874 

 
.985 

 
.985 

 
.980 

 
70 

 
0 

 
64.5 

 
84.6 

 
92.6 

 
99.7 

 
99.8 

 
99.9 

 
.786 

 
.975 

 
.974 

 
.965 

 
0 

 
22.8 

 
61.3 

 
73.8 

 
77.7 

 
81.2 

 
81.9 

 
82.6 

 
.921 

 
.982 

 
.980 

 
.979 

 
20 

 
22.8 

 
61.7 

 
74.1 

 
78.3 

 
81.9 

 
82.6 

 
83.3 

 
.915 

 
.981 

 
.977 

 
.974 

 
50 

 
22.8 

 
62.4 

 
74.9 

 
79.9 

 
83.4 

 
84.3 

 
85.3 

 
.872 

 
.969 

 
.966 

 
.952 

 
70 

 
22.8 

 
63.4 

 
76.4 

 
82.1 

 
85.6 

 
87.1 

 
88.5 

 
.784 

 
.947 

 
.938 

 
.908 
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The accuracy of the recovery of the legislator configuration is quite good and only begins 

to fall off at 70 percent missing entries.  Consistent with the discussion of Figure 6, the overall 

Pearson correlation between the 4,950 pairwise true and reproduced distances deteriorates more 

rapidly than the correlations between the true and reproduced legislator locations on each 

dimension.   

Figure 7 shows the average percent correct classifications from Table 8.  The elbows are 

quite clear at the true dimensionality.  With perfect data the procedure unambiguously finds the 

true dimensionality.  With error, there is a tendency for the correct classification to increase with 

the percentage of missing data.  This makes sense because, with respect to locating a legislator 

point, with more missing data there are fewer roll call cutting planes and hence the legislator 

position is not as constrained as it is with complete data.  This increase in “wiggle room” will 

increase the correct classification and decrease the correlations of the true and reproduced 

legislator configurations.  In any event, the results shown in Table 8 and Figure 7 suggest that 

the algorithm will perform well with real world data at realistic levels of missing entries. 
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6.  Empirical Examples of Non-Parametric Unfolding of Binary Choice Matrices 

 In this section I show two empirical examples of the non-parametric unfolding procedure.  

The first is to U.S. Senate roll call data and the second is to feeling thermometer ratings of 

political figures gathered from respondents in the NES 1968 presidential election study.  Both 
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sets of data have been extensively analyzed by numerous researchers utilizing a variety of 

methodologies.   

Feeling thermometer data is technically not binary choice – however, it can be interpreted 

as rank order data and that can be converted to binary choice.  A feeling thermometer measures 

how warm or cold a person feels towards the stimulus and the measure ranges from 0 – very cold 

and unfavorable opinion – to 100 – very warm and favorable opinion with 50 being a neutral 

point.  In 1968 respondents were asked to give feeling thermometer ratings to 12 political 

figures:  George Wallace, Hubert Humphrey, Richard Nixon, Eugene McCarthy, Ronald 

Reagan, Nelson Rockefeller, Lyndon Johnson, George Romney, Robert Kennedy, Edmund 

Muskie, Spiro Agnew, and Curtis LeMay.19   

Suppose a respondent gave ratings of 30, 80, and 55 to Wallace (W), Humphrey (H), and 

Nixon (N) respectively.  With respect to these three candidates, the rank order is H > N > W.  

Now suppose a second respondent gave ratings of 45, 65, and 95, respectively, for a rank order of 

N > H > W.  These rank orders can be converted to binary choice data by treating each pair of 

candidates as a roll call vote.  For example, consider the pair of Wallace and Humphrey.  If a 

respondent rates Wallace higher than Humphrey make that Yea, and if Humphrey is rated higher 

than Wallace, make that Nay.  Doing this consistently across respondents creates a roll call vote 

where the outcomes are Wallace and Humphrey, respectively. 

With the actual 1968 data, I used the order of the 12 political figures listed above (which 

is their actual order in the NES data set) to create the roll calls.  That is, given a pair of 

politicians, the one earlier in the NES ordering was treated as a Yea and the later one a Nay.  So 

if the pair was Ronald Reagan and Curtis LeMay, then if a respondent rated Reagan higher than 

LeMay that is a Yea vote.  If a respondent gave a pair of politicians the same rating, for 
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example, 55 and 55, then I treated it as missing data (that is, as if the respondent abstained on the 

roll call). 

 

 6.a.  U.S. Senate Roll Call Matrices 

 My first application is to Senate voting after World War II.  I focus on this period 

because it has been extensively analyzed by Poole and Rosenthal (1997) which will facilitate the 

interpretation of the results.  I compare the two-dimensional senator coordinates from the 

non-parametric unfoldings with those produced by KYST, a non-metric multidimensional scaling 

procedure developed by Kruskal, Young, and Seery (1973), and NOMINATE, a maximum 

likelihood procedure developed by Poole and Rosenthal (1991, 1997). 

Table 9 reports the classification results for Senates 80 to 104 (first session) in one and 

two dimensions for the non-parametric procedure.  These percentages are about 3 to 5 

percentage points better than NOMINATE in both one and two dimensions (Poole and 

Rosenthal, 1997, chapter 3).  This is not surprising given that the NOMINATE procedure 

maximizes a likelihood function – that is, it estimates legislator and roll call outcome coordinates 

which maximize the probabilities of the observed choices.  It does not attempt to maximize 

correct classifications. 
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Table 9 

U.S. Senate:  1947 - 1995  
Non-Parametric Unfolding of Roll Call Data 

 

 
Senate 

 
Years 

 
Senators 

 
Roll Calls 

Total 
Choices 

Average 
Margin 

Non-P 
1st 

Non-P 
2nd 

kyst 
R 1st 

kyst 
R 2nd 

nom 
R 1st 

Nom 
R 2nd 

 
104 

 
1995 

 
101a 

 
541b 

 
52,966c 

 
.638 

 
90.1d 

 
91.4 

 
.977e 

 
.605 

 
.976f 

 
.852 

103 1993-94 101 647 63,023 .672 89.2 90.4 .988 .884 .994 .943 
102 1991-92 102 481 46,208 .685 86.9 88.5 .993 .899 .981 .926 
101 1989-90 101 499 48,649 .680 85.4 87.1 .992 .919 .987 .949 
100 1987-88 101 635 59,631 .709 87.7 89.5 .991 .854 .991 .971 
99 1985-86 101 661 63,104 .688 84.7 86.8 .996 .917 .992 .978 
98 1983-84 101 578 53,330 .698 84.8 87.3 .993 .940 .989 .975 
97 1981-82 101 818 77,672 .682 85.5 88.1 .997 .948 .996 .987 
96 1979-80 101 928 82,937 .683 83.5 85.8 .994 .895 .995 .984 
95 1977-78 104 1037 92,868 .691 84.5 86.4 .996 .844 .993 .737 
94 1975-76 100 1144 100,328 .691 86.3 88.6 .995 .982 .993 .981 
93 1973-74 101 983 87,699 .695 85.1 87.5 .997 .953 .997 .977 
92 1971-72 102 783 68,588 .676 85.0 88.6 .995 .963 .993 .983 
91 1969-70 102 557 49,219 .681 84.5 88.1 .995 .951 .987 .968 
90 1967-68 101 518 46,081 .699 83.6 87.2 .992 .949 .993 .968 
89 1965-66 102 441 40.618 .681 85.4 88.4 .991 .949 .983 .974 
88 1963-64 102 505 47,797 .686 85.0 90.1 .976 .978 .936 .965 
87 1961-62 105 400 38,189 .675 87.3 90.6 .975 .971 .953 .923 
86 1959-60 103 360 33,855 .686 84.9 89.6 .981 .971 .971 .954 
85 1957-58 98 255 23,097 .669 84.7 89.4 .979 .963 .961 .959 
84 1955-56 99 184 16,798 .659 85.5 90.4 .982 .955 .955 .960 
83 1953-54 103 242 20,991 .672 86.9 90.3 .974 .859 .956 .938 
82 1951-52 96 208 17,368 .659 86.0 89.4 .971 .848 .975 .938 
81 1949-50 102 447 38,074 .667 85.0 88.6 .985 .925 .979 .963 
80 1947-48 97 237 20,321 .665 88.0 90.8 .967 .932 .969 .903 

 
a Number of Senators may exceed two times the number of States because of within Congress 
replacements. 
b Number of roll calls with at least 2.5% voting, paired, or announced, on losing side. 
c Total choices may not equal number of Senators times number of roll calls because of 
non-voting due to absences, etc.. 
d Classifications from non-parametric unfolding algorithm. 
e Pearson correlation between Senator coordinates from KYST and Senator coordinates from 
non-parametric unfolding.  Non-parametric unfolding configuration rotated to best match KYST 
configuration. 
f Pearson correlation between Senator coordinates from W-NOMINATE and Senator coordinates 
from non-parametric unfolding.  Non-parametric unfolding configuration rotated to best match 
W-NOMINATE configuration.  
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Table 9 also shows the Pearson correlations between the estimated dimensions of the 

non-parametric procedure and those produced by KYST and NOMINATE, respectively, in two 

dimensions. 20  These correlations are, for the most part, very high – most of the first dimension 

correlations are above .95 and the second dimension correlations are mostly above .9.  Because 

the non-parametric unfolding produces configurations very similar to those of both KYST and 

NOMINATE, these results strongly support the substantive interpretations of the legislator 

configurations discussed in Poole and Rosenthal (1997). 

Table 10 shows the rank order from most liberal to most conservative for the 104th Senate 

using roll call data through December 1995.  Campbell of Colorado switched from Democrat to 

Republican in April of 1995 so he appears twice (ranks 47 and 53).  If two or more senators tied 

in the ranking, the average of the associated ranks was used.  For example, 72 senators were 

more liberal and 26 more conservative than the threesome Shelby (R-AL), Abraham (R-MI), and 

Frist (R-TN), who were tied.  Consequently they all were assigned the average rank of 74. 
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Table 10 

104th (1995) U.S. Senate 
 

Name 
 

Rank 
 

Name 
 

Rank 
 

Name 
 

Rank 
 

Simon (D-IL) 
 

1 
 

Nunn (D-GA) 
 

45 
 

Lott (R-MS) 
 

89 
Wellstone (D-MN) 2 Heflin (D-AL) 46 Gramm (R-TX) 90 
Feingold (D-WI) 3 Campbell (D-CO) 47 Helms (R-NC) 91 

Levin (D-MI) 4 Jeffords (R-VT) 48 Craig (R-ID) 92 
Kennedy (D-MA) 5 Cohen (R-ME) 49 Kempthorne (R-ID) 93 

Boxer (D-CA) 6 Specter (R-PA) 50 Nickles (R-OK) 94 
Leahy (D-VT) 7 Snowe (R-ME) 51 Smith (R-NH) 95.5 

Bumpers (D-AR) 8 Chafee (R-RI) 52 Inhofe (R-OK) 95.5 
Bradley (D-NJ) 9.5 Campbell (R-CO) 53 Faircloth (R-NC) 97 

Lautenberg (D-NJ) 9.5 Kassebaum (R-KS) 54 Grams (R-MN) 98 
Murray (D-WA) 11 Packwood (R-OR) 55 Brown (R-CO) 99 
Harkin (D-IA) 12 Simpson (R-WY) 56 Kyl (R-AZ) 100.5 

Moseley-Braun (D-IL) 13 Roth (R-DE) 57 McCain (R-AZ) 100.5 
Pell (D-RI) 14 Hatfield (R-OR) 58   

Moynihan (D-NY) 15 Dewine (R-OH) 59   
Dorgan (D-ND) 16 Stevens (R-AK) 60   
Conrad (D-ND) 17 Gorton (R-WA) 61   
Pryor (D-AR) 18 D’Amato (R-NY) 62   
Kerry (D-MA) 19.5 Domenici (R-NM) 63   
Kohl (D-WI) 19.5 Lugar (R-UT) 64   

Sarbanes (D-MD) 21 Bond (R-MO) 65   
Akaka (D-HI) 22 Pressler (R-SD) 66   

Daschle (D-SD) 23 Murkowski (R-AK) 68   
Rockefeller (D-WV) 24 Cochran (R-MS) 68   

Biden (D-DE) 25 Burns (R-MT) 68   
Mikulski (D-MD) 26 Warner (R-VA) 70   

Dodd (D-CT) 27 Grassley (R-IA) 71   
Glenn (D-OH) 28 Thomas (R-WY) 72   
Inouye (D-HI) 29 Shelby (R-AL) 74   

Bingaman (D-NM) 30 Abraham (R-MI) 74   
Byrd (D-WV) 31 Frist (R-TN) 74   
Bryan (D-NV) 32 Hatch (R-UT) 76   
Graham (D-FL) 33 Bennett (R-UT) 77   

Feinstein (D-CA) 34 Santorum (R-PA) 78   
Kerrey (D-NE) 35 Hutchison (R-TX) 79   
Ford (D-KY) 36 Gregg (R-NH) 80   

Hollings (D-SC) 37 Mack (R-FL) 81.5   
Reid (D-NV) 38 Dole (R-KS) 81.5   

Breaux (D-LA) 39 Coverdell (R-GA) 83.5   
Johnston (D-LA) 40 Coats (R-IN) 83.5   

Robb (D-VA) 41 McConnell (R-KY) 85.5   
Lieberman (D-CT) 42 Thurmond (R-SC) 85.5   

Exon (D-NE) 43 Thompson (R-TN) 87   
Baucus (D-MT) 44 Ashcroft (R-MO) 88   
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 The polarization of American politics is evident from an inspection of the table.  There is 

no overlap of the two parties.21  Campbell’s voting record as a Democrat made him the most 

conservative Democrat in the Senate.  His conversion only moved him from 47th to 53rd rank – 

from the right edge of the Democratic party to the midst of the moderates of the Republican 

party. 

 Figure 8 shows the two dimensional configuration of senators for the 85th Senate along 

with a histogram of the roll call cutting line angles.  The two major parties are clearly separated 

with the Democratic party being split into its Northern and Southern wings.  The 85th Senate 

occurred during the height of the three-party system which lasted from the late 1930s to the late 

1970s (Poole and Rosenthal, 1991, 1997; McCarty, Poole, and Rosenthal, 1996).  The 

approximate angle of a party-line vote and the approximate angle of a conservative coalition vote 

(Northern Democrats versus a coalition of Southern Democrats and Republicans) are indicated in 

the histogram of the cutting line angles.  The second dimension picked up the split in the 

Democratic Party over race-related issues. 



 58 

 

 6.b.  NES 1968 Feeling Thermometer Ratings of Political Figures 

 The thermometer ratings were converted to binary choices as explained earlier.  If a 

respondent gave a thermometer rating to all 12 politicians, then the respondent was treated as 

casting 66 (12x11/2) roll call votes.  In order to be included in the analysis, the respondent had 



 59 

to vote on at least 25 out of the 66 total possible pairings.  The first 450 respondents in the 

survey were analyzed of which 418 rated enough politicians to be included in the analysis.22 

 The results were quite good.  The correct classifications were 84.6 percent in one 

dimension and 88.9 percent in two dimensions (average margin, 0.699; total choices, 21,839).  

Figure 9 shows several plots of the 418 respondents coded as to how they reported they had voted 

(or not voted) in the 1968 presidential election. 
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 Panel A of Figure 9 shows all 418 respondents, panel B just the non-voters, and panels C, 

D, and E show the Humphrey, Nixon, and Wallace voters, respectively, along with the cutting 

lines between the relevant presidential candidate pairs.  The distribution of the voters and 

non-voters is very similar to that found by other scaling techniques (Wang et al. [1975]; 

Rabinowitz [1976]; Cahoon et al. [1978]; Poole and Rosenthal [1984]).23  Specific locations for 

the political figures cannot be estimated with this technique.  However, ceteris paribus, the 

cutting lines do create regions where the politicians must lie.  For example, there are no cutting 

lines for Wallace that are above the two shown in panel E.  The cutting lines for Wallace versus 

Johnson and Wallace versus Kennedy are almost exactly where the Wallace versus Humphrey 

line is in the Figure.  Hence, Wallace must be located in the pie slice defined by the Wallace 

versus Nixon and Wallace versus Humphrey cutting lines. 

 Wallace was such a divisive figure in 1968 that the cutting lines for Wallace versus the 

other 11 political figures all classify at 95 percent or higher.  Consequently, the noise level is so 

low that the region of the space that Wallace must lie in can be inferred with some confidence.  



 63 

This is not as true for either Humphrey or Nixon.  For example, when paired against Robert 

Kennedy, 78 respondents voted for Humphrey and 223 voted for Kennedy.  The estimated 

cutting line produced 66 classification errors – little better than the marginals of the roll call.  

Consequently, the cutting line for Humphrey versus Kennedy yields little useful information.  

However, this is an exception, not the rule.  The overall correct classification in two dimensions 

was 88.9 percent and most of the cutting lines for Nixon and Humphrey are well above that 

figure.  Although I will not pursue the topic here, it should be possible to infer what regions the 

outcomes are in when faced with noisy cutting lines. 

 

7.  Conclusion 

 In this paper I have shown a general non-parametric technique for maximizing the correct 

classification of binary choice or two-category data.  I estimate cutting planes or cutting planes 

and chooser points in an Euclidean space such that the correct classification of the observed 

two-category data is maximized.  I make only two assumptions:  1) the choice space is 

Euclidean; and 2) the individuals making choices behave as if they utilize symmetric, 

single-peaked preferences.  I strongly suspect that the first assumption can be relaxed to a 

general Minkowski metric.  That is a topic for future research.  However, the assumption of 

symmetric preferences cannot be relaxed. 

 In order to perform a non-parametric unfolding of a binary choice matrix, two 

subproblems must be solved.  First, given the chooser coordinates, for each binary choice find 

the cutting plane that maximizes correct classification; and second, given the cutting planes, for 

each chooser find the point that maximizes correct classification.  Solutions for these two 

subproblems were shown in sections 3 and 4. 
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Although I do not have formal proofs that either technique converges to the classification 

maximum, Monte-Carlo tests show that both in fact work very well in practice.  In the presence 

of error, the cutting plane procedure does not necessarily converge to a classification maximum.  

However, because of the way that the cutting plane procedure is operationalized, it almost 

certainly passes through, or very near to, the classification maximum and the maximum can be 

recovered from the iteration record.  The legislator/chooser procedure is guaranteed to converge 

to a very strong local maximum.  That is, a local maximum for which the point cannot be moved 

in any orthogonal direction and have the correct classifications increase.  When the two 

procedures are used together in an alternating framework to analyze binary choice matrices, their 

performance is very good.  The Monte-Carlo tests in section 5 and the empirical applications in 

section 6 are testimony to this fact. 

For data sets which consist of a two-category dependent variable and a set of independent 

variables, the cutting plane procedure shown in section 3 recovers essentially the same 

coefficients as a probit analysis of the same data when the underlying error distribution is 

symmetric.  The bootstrapped standard errors for the cutting plane coefficients almost always 

produce the same pattern of significance as that for the probit coefficients. 

The cutting plane procedure can be easily generalized to multi-category ordered probit 

using a single normal vector.  In the multiple choice context where there is no natural ordering 

of the choices so that there are multiple normal vectors, it should be possible to modify the 

cutting plane procedure to handle curved surfaces.  This is a topic for future research.  If 

successful, it would permit the non-parametric estimation of multiple choice and conditional 

choice models. 
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Notes 

 

                                                 
1  The configuration shown in Figures 3 and 4 is of the 80th House of Representatives.  See Poole and Rosenthal 
(1991, 1997) for an extended discussion of the analysis of roll call voting in the U.S. Congress. 
 
2  The famous Eckart-Young result was never stated as an explicit theorem in their paper.  Rather they use two 
theorems from linear algebra and a very clever argument to show the truth of their result.  Later, Keller (1962) 
independently rediscovered the Eckart-Young result.  
 
3 The first proof that every rectangular matrix of real elements can be decomposed as shown in equation (5), was 
given by Johnson (1963).   
 
4  In particular, each legislator coordinate was drawn from a uniform [-1,+1] distribution.  If the sum of the squared 
coordinates exceeded 1, the coordinates were discarded and a new draw performed.  In effect the draw was over the 
unit hypercube and those coordinates outside the internal unit hypersphere were discarded.  The coordinates for the 
normal vectors were also drawn from a [-1,+1] distribution and then normalized so that their sum of squares equaled 
1.  The cutting points were drawn from a uniform [0,1] distribution and then taken to the 4th power.  This had the 
desired effect of clustering the cutting planes such that the average margin was about 62-38 (or 38-62 since the 
yes/no outcomes were also randomly assigned). 
 
5  X was generated as explained in note 4 above. 
 
6  The s elements of β were randomly drawn from the uniform [-1,+1] distribution and then scaled so that their sum 
of squares equaled 1; that is, β′β = 1. 
 
7 The Probit classifications were based upon the estimated probabilities from the Probit analysis. 
 
8  As of April, 1996, there were 236 Republicans in the House.  I excluded the 5 party switchers – Laughlin (TX), 
Parker (MS), Hayes (LA), Deal (GA), Tauzin (LA) – from the analysis.  Campbell (R-CA), who won a special 
election to replace Mineta (D-CA), is included. 
 
9 The source for the co-sponsors is “Who You Calling ‘Moderate?’”, by Bob Balkin, PoliticsUSA, at 
www.politicsusa.com, Wednesday, April 24, 1996. 
 
10  I sampled by observation with replacement (that is, I sampled the rows of the original data matrix with 
replacement) to form 100 matrices and ran the cutting plane procedure on each matrix.  The standard errors were 
obtained by computing the sum of squared differences between the actual normal vector from the original data and 
the 100 normal vectors from the bootstrap trials.  I divided this sum of squares for each coefficient by 100 and took 
the square root as the estimate of the standard error. 
 
11  See Palfrey and Poole (1987) for a conditional logit model of choice for the 1980 presidential election. 
 
12  See note 4 above. 
 
13  The data were generated as described in note 4 above.  Roll calls with less than 2.5% (98-2, 99-1, 100-0) in the 
minority were discarded so that the results reported here can be compared to those from the NOMINATE procedure 
developed by Poole and Rosenthal (1991, 1997).  See Section 6 below. 
 
14  In parametric problems which use a squared error loss function such as one dimensional metric 
similarities/unfolding analysis, this sort of local minimum is extremely rare.  See Poole (1990). 
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15  The recovered locations of the 100 artificial legislators were rotated so as to best match the true for purposes of 
presentation.  The rotation does not change the interpoint distances between the legislators.  In psychometrics, this 
is known as an “orthogonal procrustes” problem.  I used the technique developed by Schonemann (1966) to solve 
for the rotation matrix. 
 
16  See Kruskal and Wish (1978) for a general discussion and examples; and Green, Carmone, and Smith (1989) for 
numerous examples in the marketing field. 
 
17  To generate the probabilities, I utilized a simple logit model framework.  Yea and Nay outcome coordinates 
were created by placing them on the normal vector .5 units on either side of the true cutpoint.  A legislator’s utility 
for each outcome was assumed to be a bell-shaped function in the squared distance (d2) of the legislator to an 
outcome plus random error; that is, the utility function is 

 U(Yea) = u(Yea) + ε = αexp[λd2] + ε  
where u(Yea) is the deterministic portion of the utility function, and ε, the stochastic portion, is distributed as the log 
of the inverse exponential (the logit distribution).  Because the logit distribution does not have a variance parameter, 
α is a scaling constant that controls the overall noise level – if α is zero, the utility will be white noise, if α is large, 
the utility will be due only to the distance.  λ is a scaling constant that controls the shape of the utility function.  
The actual values used were α=15.0 and λ=.125.  The probability of voting Yea is:  P(Yea) = 
exp[u(Yea)]/{exp[u(Yea)] + exp[u(Nay)]}.  The choice with the higher probability was entered in the matrix. 
 
18  For every entry in the 100 by 500 matrix a “weighed coin” was “flipped” to determine if it was to be removed.  
This was accomplished by drawing 50,000 numbers from the uniform [0, 1] distribution – one for each entry in the 
roll call matrix.  To generate 20 percent missing data, for example, all entries corresponding to a uniform random 
number greater than .8 are removed.  
 
19  The NES survey was conducted after Robert Kennedy’s assassination in June, 1968.  This obviously affects the 
ratings Kennedy received. 
 
  
20  I limit my analysis to the two dimensional case because Poole and Rosenthal (1997) show that, for most of 
American history, at most two dimensions are required to account for the substance of roll call voting decisions.  
The non-parametric configuration was rotated to best match the NOMINATE configuration using Schonemann’s 
(1966) technique.  See note 15 above. 
 
21  For a general analysis of the polarization of American politics, see McCarty, Poole, and Rosenthal (1996).  
Using NOMINATE, they show almost no overlap in the House of Representatives. 
 
 
22  There were a total of 1399 respondents.  I limited the number of respondents to 450 due to computer memory 
considerations. 
 
23  Weisberg and Rusk (1970) use the non-metric multidimensional scaling procedure developed by Kruskal 
(1964a,b) to recover a candidate configuration from the candidate by candidate Pearson correlation matrix computed 
across the respondents.  They do not estimate the respondent locations.  The candidate configuration estimated by 
Weisberg and Rusk is essentially the same as that estimated by the other cited researchers. 
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