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Recovering a Basic Space 
From a Set of Issue Scales* 
Keith T. Poole, Carnegie-Mellon University 

This paper develops a scaling procedure for estimating the latent/unobservable dimen- 
sions underlying a set of manifest/observable variables. The scaling procedure performs, 
in effect, a singular value decomposition of a rectangular matrix of real elements with 
missing entries. In contrast to existing techniques such as factor analysis which work 
with a correlation or covariance matrix computed from the data matrix, the scaling proce- 
dure shown here analyzes the data matrix directly. 

The scaling procedure is a general-purpose tool that can be used not only to estimate 
latent/unobservable dimensions but also to estimate an Eckart-Young lower-rank ap- 
proximation matrix of a matrix with missing entries. Monte Carlo tests show that the pro- 
cedure reliably estimates the latent dimensions and reproduces the missing elements of a 
matrix even at high levels of error and missing data. 

A number of applications to political data are shown and discussed. 

1. Introduction 
The purpose of this paper is to show a scaling method for estimating la- 

tent/unobservable dimensions underlying a set of manifestlobservable vari- 
ables. The data to be analyzed is assumed to be in the form of a rectangular 
matrix of real elements with missing entries. What the method does, in ef- 
fect, is to perform a singular value decomposition of the rectangular matrix 
with missing elements. In contrast to existing techniques such as factor 
analysis which work with a correlation or covariance matrix computed from 
the data matrix, the scaling procedure shown here analyzes the data matrix 
directly without any intervening transformations of the original data. 

For example, asking respondents to place themselves and/or stimuli on 
issuelattribute scales is a common type of data gathered by social scientists. 
The Center for Political Studies at the University of Michigan has been col- 
lecting seven-point scale data in its National Election Studies since 1968. 
The endpoints of these scales are labeled, and the respondent is asked to 
place him or herself on the scale (his or her "ideal point") along with a set of 
political figures and, in some cases, the two political parties and current fed- 
eral government policy. 

*I would like to thank Howard Rosenthal, Nolan McCarty, Tim Groseclose, and three anonymous 
reviewers for their very helpful comments and suggestions. The software that performs the analyses 
shown in this article and documentation on how to use the software along with many additional em- 
pirical examples of its use (Poole 1997) can be downloaded from http://k7moa.gsia.cmu.edu 
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The extent to which a set of issue scale placements arises from common 
underlying latent (evaluative) dimensions is an important empirical question 
for political scientists. Consider the matrix of self-placements where the col- 
umns correspond to a set of seven-point scales, and each row is a respon- 
dent's self-placement on these scales. Suppose political theory suggests that 
the observed placements are generated by linear mappings from two latent 
dimensions (e.g., liberal-conservative and racial attitude). If there were no 
error and no missing data, the solution to this problem is immediate. Be- 
cause the rank of the matrix is two, the singular value decomposition of the 
matrix will produce only two singular values and two left and two right sin- 
gular vectors. The latent dimensions are the two left singular vectors. 

Continuing with the example, if there is no missing data and error is 
present, then, provided the error is generated by a distribution that is sym- 
metric with zero mean, the best two-dimensional approximation to this ma- 
trix is given by the famous Eckart-Young (1936) theorem. Namely, given the 
singular value decomposition of the matrix, set all but the two largest singu- 
lar values to zero and remultiply (see Section 2 below). The two left singu- 
lar vectors corresponding to the two largest singular values are the estimates 
of the two latent dimensions. This is the same solution as the error free case. 

In short, if there is no missing data, obtaining estimates of latent dimen- 
sions is easy provided certain assumptions are maintained; namely, if the 
observed data are generated linearly from the latent dimensions and the error 
process is symmetric with zero mean, then the left singular vectors are the 
estimates of the latent dimensions. 

If there are missing elements in the matrix, however, then things are not 
so simple. Because each matrix has a unique singular value decomposition,' 
the problem of estimating the latent dimensions cannot be disentangled from 
the problem of estimating the missing elements of the matrix. The purpose 
of this paper is to show a solution for this problem. 

In Section 2 a simple model of latent/evaluative dimensions is stated, and 
a procedure for estimating them from a set of issue/attribute scales is devel- 
oped. The motivation and the examples are all drawn from political science 
but the technique is a general one. It can be applied to any matrix of real num- 
bers. The model outlined in Section 2 is motivated, however, by the spatial 
theory of choice. In particular, it corresponds to a spatial theory proposed by 
Ordeshook (1976) and by Hinich and Pollard (1981) and then elaborated by 
Hinich and his colleagues (Enelow and Hinich 1984; Hinich and Munger, 

'If two or more singular values are identical, then the corresponding singular vectors can be 
interchanged. Technically, these are different decompositions but they only differ in the fact that the 
corresponding pair(s) of dimensions are interchanged. 
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1994, 1997). In standard spatial theory, each issue is modeled as an ordered 
dimension of alternatives, and each respondent is assumed to have an ideal 
point on, and single-peaked preferences over, each issue dimension. If the re- 
spondents have highly structured belief systems (Converse 1964), then this 
means that the issues lie on a low-dimensional hyperplane through the issue 
space. This low dimensional space was dubbed a basic space by Ordeshook 
(1 976) and the predictive dimensions by Hinich. More generally, these are la- 
tent or evaluative dimensions and in political science work are commonly re- 
ferred to as ideological dimensions (Hinich and Munger 1994). I will refer to 
these as basic dimensions in the discussion below.2 

The scaling procedure developed below recovers basic dimensions from 
issue scales. Although 40 years of empirical work by political scientists has 
shown that the American public is not strictly ideological in that most people 
do not have highly structured belief systems, they also are not "ideologically 
innocent" either (Feldman and Zaller 1992). Ideological consistency, that is, 
the degree to which issue positions are coherently generated by basic dimen- 
sions, clearly varies. Below I find that about half the variance of the indi- 
viduals' seven-point issue scale positions in the NES 1980 survey is ex- 
plained by a single basic dimension. In contrast, Poole and Rosenthal(1997) 
show considerable evidence that members of Congress are quite consistent 
over long periods of time on one and sometimes two basic dimensions. Al- 
though it is beyond the scope of this paper, the empirical examples shown in 
Section 5 suggest that ideological consistency is a top-down phenomenon. 
Political elites are more ideologically consistent than the mass public, and it 
is quite likely that this has an impact on how issues are "packaged" (Hinich 
and Munger 1997, chap. 9). 

The estimation procedure uses an alternating least squares approach, 
and the method for estimating the missing entries is best thought of as a hy- 
brid of the principal components and the regression methods discussed by 
Gleason and Staelin (1975).3 The approach taken here is unique, however, 
because the observed (nonmissing) elements of the data matrix are used in 
an alternating least squares procedure to estimate a lower rank approxima- 
tion of the entire matrix. The aim is not to estimate the missing data per se. 
Rather, the estimates of the missing data are a byproduct of the lower rank 

2My use of the label "basic dimensions" is also motivated by the fact that Horst (1963) refers 
to the singular value decomposition of a rectangular matrix as the basic structure of a matrix. 

3Gleason and Staelin test and compare a number of methods for estimating missing data. Their 
preferred method is principal components. They found little difference, however, between the re- 
gression method and the principal components method and preferred the latter in part because of 
computer time considerations (1975,245). 
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approximation. In contrast, traditional approaches to estimating missing data 
reconstruct the missing data directly from the observed data. 

For example, suppose the data matrix is 500 respondents' self-
placements on fifteen issue scales and that 50% of the data is missing. Sup- 
pose further that theory suggests two latent dimensions. The procedure de- 
veloped in Section 2 estimates a matrix of rank two such that the sum of 
squared differences between the elements of the estimated matrix and the 
observed elements of the data matrix is minimized. Geometrically, the data 
matrix is a set of 500 points in a fifteen dimensional space where, because of 
the missing entries, most of the points only have coordinates on seven or 
eight dimensions. The missing data can be thought of as being zeroes on the 
corresponding dimensions so that the 500 points on average lie on seven or 
eight dimensional hyperplanes through the fifteen dimensional space. The 
least squares problem is equivalent to finding a two dimensional plane 
through this fifteen dimensional space that comes as close as possible to 
these points. The missing entries are given by the estimated plane. 

In contrast, using a traditional approach to estimate missing entries pro- 
duces a matrix such that, geometrically, the corresponding hyperplane 
passes through all the observed coordinates and is almost certainly of full 
rank. In terms of the 500 by 15 example in the previous paragraph, this 
would almost certainly produce a matrix of rank 15. The two dimensional 
approximation to this matrix is not the same as the approach developed in 
Section 2. Indeed, it is distinctly inferior. 

Monte Carlo tests of the procedure are discussed in Section 3. The 
Monte Carlo tests show that the estimation procedure accurately reproduces 
the true data even with high levels of error and missing data levels as high as 
70%. In addition, the procedure accurately reproduces the true missing data. 

The relationship of the model stated in Section 2 with other scaling tech- 
niques is discussed in Section 4. The scaling procedure developed below is 
unique in that it works directly with the rectangular data matrix (denoted by 
X, below). Most current scaling techniques deal with a covariance or correla- 
tion matrix formed from the rectangular data matrix by either list-wise (throw- 
ing out any row with missing data) or pair-wise deletion (that is, constructing 
some version of X,,' X,). In contrast to other techniques, the scaling procedure 
developed here allows the recovery of latent dimensions from very sparse 
matrices in which every row has missing data (for example, overlapping gen- 
erations data gathered over a long period of time; or split sample data). 

Two applications are shown in Section 5. The first is to the self- 
placements of respondents on a set of issue scales in the 1980 CPS national 
election study. The second is to W-NOMINATE scores of the House and 
Senate from 1937 to 1995. 
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2. The Model 
Let xij be the ith individual's (i = 1, . . . ,n) reported position on the jth 

issue (j = 1, . . . ,m) and let Xobe the n by m matrix of observed data where 
the "0" subscript indicates that elements are missing from the matrix-not 
all individuals report their positions on all issues. Let w , ~be the ith indi- 
vidual's position on the kth (k = 1, . . . , s) basic dimension. The model esti- 
mated is: 

where Y is the n by s matrix of coordinates of the individuals on the basic 
dimensions, W is an m by s matrix of weights, c is a vector of constants of 
length m, J, is an n length vector of ones, and Eois an n by m matrix of er- 
ror terms. W and c map the individuals from the basic space onto the issue 
dimensions. 

I assume that the elements of Eoare random draws from a symmetric 
distribution with zero mean. 

Without loss of generality, the centroid of the coordinates of the indi- 
viduals on the basic dimensions may be placed at the origin; that is, J,'Y = 
-0' (note that this is simply taking the sum of the elements of each column), 
where Q is an s length vector of zeroes. Because J,'Y = Q', if there were no 
missing data, then Jnf[X-Jnc'] = Q' where Q is an m length vector of zeroes. 

Equation [ lA]  can be written as the product of partitioned matrices 

where [~JIJ,]is a n by s+l matrix, and [ w ] ~ ]is an m by s+l matrix. If n > 
m and there is no error or missing data, then the rank of X is s and the rank 
of X - Jnc' is less than or equal to s . ~  If m > n and there is no error or miss- 
ing data, then the rank of X is s and if J,'X # 0, then the rank of X -J,cf is 
s - 1 because J,'[X - Jncf]= Q'. That is, subtracting off the column means 
from X so that the n entries in each of the m columns sum to zero reduces 
the rank by 1 .  

If there were no missing data in [I], then it could be estimated quite 
simply by using singular value decomposition. In particular, the following 
two well known matrix decomposition theorems can be utilized to solve [I]. 

41n most circumstances, subtracting the column means will leave the rank unchanged. If the 
entries are squared distances, however, then subtracting the column means will reduce the rank of 
the matrix by 1. 
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TheoremI (Singular Value Decomposition) 
Let A be an n by m matrix of real elements with n 2 m. Then there is an 

n by n orthogonal matrix U, an m by m orthogonal matrix V, and an n by m 
matrix A such that 

A = U A V' and U'AV = A 

where 

where Amis an m by m diagonal matrix and 0 is an n -m by m matrix of ze- 
roes. The diagonal entries of Am are nonnegative with exactly s entries 
strictly positive (s Im). 

Theorem11(Eckart and Young) 
Given an n by m matrix A of rank r Im I n and its singular value 

decomposition, UAV', with the singular values arranged in decreasing 
sequence 

then there exists an n by m matrix B of rank s, s I r, which minimizes the 
sum of the squared error between the elements of A and the corresponding 
elements of B when 

where the diagonal elements of As are 

Theorem I states that every real matrix can be written as the product of 
two orthogonal matrices and one diagonal m a t r i ~ . ~  Theorem I1 states that the 

Theorem I was stated by Eckart andYoung (1936) in their famous paper but they did not pro- 
vide a proof. The first proof that every rectangular matrix of real elements can be decomposed as 
shown in Theorem I was given by Johnson (1963). Horst (1963) refers to the decomposition shown 
in Theorem I as the basic structure of a matrix and discusses the mechanics of matrix decomposition 
in detail in chapters 17 and 18.A more recent treatment can be found in chapters 1 and 2 of Lawson 
and Hanson (1974). 
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least squares approximation in s dimensions of a matrix A can be found by 
replacing the smallest m-s roots of A with zeroes and remultiplying UAV'.6 

Because the lower n-m rows of A are all zeros, it is convenient to dis- 
card them and work only with the m by m diagonal matrix A,. In addition, 
the n-m eigenvectors in U corresponding to the n-m lower rows of A may 
also be discarded. Hereafter, unless otherwise noted, A will be treated as a 
square diagonal matrix with the singular values on the diagonal (that is, from 
now on A = A,). Hence U is an n by m matrix, A is an m by m diagonal ma- 
trix, and V is an m by m matrix. A decomposition according to Theorem I 
will be assumed to be in this form. 

To solve [I], set c equal to the column means of X; that is 

and perform a singular value decomposition of X -J,c'. By Theorem I 

X -J,c' = UAV' = YW' 

where, as noted above, U is an n by m matrix, A is an m by m matrix, and V 
is an m by m matrix. 

A simple solution for Y and W is 

1 

where the diagonal elements of A? are the square roots of A. Let I, be the 
m by m identity matrix. Equation [2] implies that Y'Y = W'W. That is: 

and 

6Theorem I1 was never explicitly stated by Eckart and Young. Rather, they use two theorems 
from linear algebra (Theorem I was the first) and a very clever argument to show the truth of their 
result. Later, Keller (1962) independently rediscovered the Eckart-Young result (Theorem 11). 
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In addition, as noted above, because J,'[X - Jngf]= Q', then J,'U = J,'Y = 
-0', where Q is an m length vector of zeros. 

When an s < m is preferred, Theorem I1 may be used in [2] to arrive at 
solutions for Y and W. That is, the s + 1to m singular values are set equal to 
zero so that Y and W from [2] are n by s and m by s matrices, respectively. 

Because of the presence of missing data, Theorems I and I1 cannot be 
used directly. Instead, I shall work with the loss function 

which, if there were no missing data, is the function which is minimized by 
Theorem I1 when cj = 0. The notation mi means that the total of the summa- 
tion over j may vary from s + 1 to m depending on how many entries there 
are in the ith row of X,. That is, each individual must report at least s + 1is-
sue positions in order to be identified. Furthermore, the number of missing 
entries in the columns of X, must also be restricted. In most practical appli- 
cations n will be much larger than m. Consequently, I will adopt the conven- 
tion that there must be at least 2m entries in each column of X,. 

In line with the discussion above, the following two restrictions are ap- 
plied to the loss function: 

Y'Y = W'W and JnrY= Q' 

These restrictions produce the Lagrangean multiplier problem 

p = 5+ 2y'[Y'J,] + tr[@(YrY-W'W)] [41 

where y is an s length vector of Lagrangean multipliers and cP is a symmet- 
ric s by s matrix of Langrangean multipliers. 

In Appendix A, I show that all the Lagrangean multipliers are zero. In- 
tuitively, y = Q because the columns of Y can always be set equal to zero be- 
cause of the presence of the vector of constants, g. cP = 0 because, given an 
estimated Y and W, Theorem I can be used at any time as shown in equation 
[2] to produce Y and W such that Y'Y = W'W. However, because these con- 
straints are important in the way the model specified in equation [I] is esti- 
mated, Appendix A shows a more formal demonstration. 

Given that the Lagrangean multipliers are all zero, the partial derivatives 
ofY, W, and c from equations [3] and [4] are identical. In particular: 
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where nj means that the total of the summation over i may vary from 2m to n 
depending upon how many entries there are in the ith column of Xo. 

Setting [5A] to zero and collecting the s partial derivatives of the ith row 
of Y into a vector and dividing by 2 produces 

where W* is an mi by s matrix with the appropriate rows corresponding to 
missing entries in X, removed, giis the ith row of Y, &iis the ith row of Xo 
and is of length mi, & is the mi length vector of constants corresponding to 
the elements of &, and 0 is an s length vector of zeroes. 

If W*'W* is nonsingular, then 

Q.= (w*' w *)-I  w*' [E, - c,] [61-I 

and the rows of Y can be estimated through ordinary least squares. 
The s partial derivatives of the jth row of W from equation [5B] and the 

partial derivative for cjfrom [5C] can be collected into the vector 

where Yj* = [YoI J,] is an nj by s+l matrix (the matrix Y with the appropri- 
ate rows corresponding to missing data removed and then bordered by ones), 
w. is the s length vector of the jth row elements of W, c, is the jth element of -J 
c,&)is the jth column of X, and is of length nj, and 0 is an s+l length vector 
of zeroes. 

If Yj*'Yj*is nonsingular, then 

and the rows of W and the elements of c can be estimated through ordinary 
least squares. 
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The easiest way to estimate W and Y is to select some suitable starting 
estimate of either matrix and then iterate between [6] and [7] until conver- 
gence is achieved. This alternating least squares (ALS) procedure is similar 
in form to that employed by Carroll and Chang (1970) and Takane, Young, 
and de Leeuw (1977) for individual differences scaling. The constraints on 
W and Y can b: met at any stage of the iteration by simply s;t$ng the col- 
umn means of Y equal to zero, forming the ~;na;rix product YW', and per- 
forming a singular value decomposition of YW' according to Theorem I. 
That is, 

Yw' = UAV' 

where A is an s by s diagonal matrix containing the s singular values in de- 
scending order, and U and V are n by s and s by s matrices, respectively, 

1 1 

such that U'U = V'V = I,. Setting Y = U A ~and w = VAT as in [2] satis- 

fies the constraints. 
A simple way to proceed with the estimation is to exploit the orthogo- 

nality of Y and estimate one column of Y and W at a time. This is motivated 
by the fact that if the nj are close to n, Yj*'Yj*in [7] will be very close to a 
diagonal matrix. This process begins with computing simple starting esti- 
mates of cj and the first row of W, the m length vector, y l ,  and then using 
these to obtain starting estimates of Yi, from the formula: 

Consider the m, terms in the numerator of equation [8]. Intuitively, if the 
Gjl(xlj- 2, ) terms in the numerator all have the same sign, then this maxi- 
mizes the absolute value of the sum in the numerator and would maximize 
Gi', . Note that if this was true for all i, that is, for every row of Xo - Jnc', 
then every entry in the m by m covariance matrix, [Xo - Jnc']'[Xo - Jnc'] 
would be positive. Given the c,, the starting estimate of y, is set equal to a 
vector of plus and minus ones that maximizes the number of positive entries 
in the covariance matrix (see Appendix B). This is a convenient starting 
point because it tends to maximize the sum of the @&. 

The first step is to obtain starting estimates of the cj . These are simply 
taken to be the column means of X,: 

'This technique of finding the vector of plus and minus ones that maximizes the number of 
positive terms in the covariance matrix is very similar to the approach used to speed the convergence 
of the simple algorithm to find the eigenvectors and eigenvalues of a matrix. See Van de Geer (1971, 
273-6) and Horst (1963, chap. 18) for detailed examples. 
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To obtain a starting estimate of yl,let rbe an m by m diagonal matrix 
where the diagonal entries are either +1 or -1. An iterative search is con- 
ducted to find a r that maximizes the number of positive elements in the 
m by m covariance matrix 

Appendix B shows a simple numerical example of how to estimate T.The 
diagonal of T is used as the starting estimate of y1. 

This first estimate of the first column of Y from equation [8], i )  
(where the superscript indicates the iteration number), is returned to [qlto 
get a second estimate of wl, $,(2), and a new estimate of c .,2 !2). These are 

- J .  1
returned to [6] to reestimate g l .  After each reestimate of g l ,  lt 1s adjusted so 
that its mean is equal to zero and its sum of squares is held constant; namely, 
at the hth iteration: 

Going back and forth between [6] and [7] will always reduce the sum of 
squared error. This process is continued until there is no further improve- 
ment in the sum of squared error. This usually takes not more than five itera- 
tions At convergence, the +Lh) from equation [6] and the $p) and cp) 
from equation [7] reproduce each other. 

The second column of Y is computed in the same way as the first, only 
now Xo is replaced by the matrix of residuals 

Note that the columns of Eoland subsequent residual matrices (EO2 , . . . , 
Eo,-,) sum to zero due to the standard OLS form of equation [6]. (The rows 
of the residual matrices do not necessarily sum to zero.) Consequently, un- 
like the starting estimates of Gil shown in equation [8] which use the cj, the 
starting estimates of Gi2are simply: 
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where, as before, the Gj2are plus or minus ones. To obtain a starting esti- 
mate of w2an iterative search is conducted to find an m by m diagonal ma- 
trix of plus and minus ones, r, that maximizes the number of positive ele- 
ments in the m by m covariance matrix: 

As with the starting estimates for $,, the diagonal of r is used as the start- 
ing estimate of g2.Because c has been estimated, G2does not have to be 
bordered by ones to construct Yj* for use in equatioT[7]. Instead, equation 
[7] reduces to the simple form: 

and equation[6] becomes: 

After each reestimate of $,,it is adjusted so that its mean is equal to 
zero and its sum of squares is held constant; namely, at the hth iteration: 

Going back and forth between [ l l ]  and [12] will always reduce the sum 
of squared error. This process is continued until there is no further improve- 
ment in the sum of squared error. After convergence is achieved, a second 
matrix of residuals is computed. That is 

To estimate the remaining columns of Y and W, equations [lo], [ l  11, and 
[12] are used to obtain the $3,. ..,$,, and the g3,..., gs,respectively. Y 

A 

computed in this fashion will not be perfectly orthogonal because of the 
missing data. 
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Given the full n by s matrix Y , it is bordered by a vector of ones to 
form the n by s t1  matrix Y * which is used in equation [7] ;O obtain the full 
m by s matrix Wand the m length vector of con2tants c .  Wand are then 
used in equation [6] to obtain a new estimate of Y .  Going back and forth be- 
tween [6] and [7] wiv always reduce the sum of squared error. After each 
pass the columns of Y are set equal to zero. This process is continued until 
there is no further improvement in the sum of squared error. Only about five 
iterations using the entire matrices are usually necessary to achieye iinal 
convergence. At convergence, a singular value decomposition of Y W is 
performed so that the final estimates are as shown in equation [2]. 

In summary, the estimation procedure consists of two main ALS phases. 
In the first, each dimension is estimated one at a time (the columns of Y and 
W and the elements of c).In the second ALS phase, the full Y and W matri- 
ces and the vector of constants c are used in equations [6] and [7] until con- 
vergence. The estimation procedure is summarized in detail in Table 1. The 
first ALS phase consists of steps [I]  to [13] and the second ALS phase con- 
sists of steps [14] to [16]. 

3. Monte Carlo Tests of the Model 
Two sets of Monte Carlo results are reported in this section. First, the 

ability of the procedure to recover YW' + J,c' from equation [I]  will be 
tested. Second, the ability of the procedure to accurately reproduce the true 
variance of the error distribution will be tested and how these results relate 
to the problem of obtaining variances of the estimated parameters will be 
d iscu~sed .~  

A. Recovery of W, and c 
In order to test the ability of the procedure to recover Y,  W, and c, a 

number of matrices of varying ranks were created such that X = YW' + J,cf, 
where X is an n by m matrix of rank s. To construct X of rank s, U and V 
were obtained from a singular value decomposition of an n by m matrix of 
uniform [0,1] random numbers. The s singular values of X were set so that 
the latent dimensions-the columns of Y-were of approximately equal sa- 
lience. That is, when the column means are subtracted from X, the s singu- 
lar values of the resulting matrix, YW', are approximately equaL9 The matri- 

8Additional Monte Carlo work and empirical examples are reported in Poole (1997). Specifi- 
cally, the ability of the procedure to estimate the Eckart-Young lower rank approximation matrix of 
an arbitrary matrix of real numbers with missing entries is tested and found to be highly accurate. 

9Because the sum of the squared singular values of a matrix is equal to the sum of the squared 
elements of the matrix, if the column means, c ,are large positive numbers (e.g., a matrix of indi- 
vidual self-placements on seven-point scales), then the first singular value of X will be quite large 
compared to the remaining s-1 singular values. 
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Table 1. Summary of the Estimation Procedure 

Obtain starting estimates of i , denoted by c(",using the column means of Xo. 
Obtain starting estimates of el,denoted by $,(I),by finding the vector of plus and 

minus ones that maximizes the number of positive elements in the covariance matrix 
[x0- J, 2]'[xo- J, i?] (see Appendix B). 

1) 

2) Use -('I and $,(I)in equation [8] to obtain a starting estimate of $ ,denoted by $ ( I ) ,
-1 -1 

and set the mean of -$ 
1

('I equal to zero. 

3) Use $ ('I in equation [7] to obtain a second estimate of i and $,- i(" and gl('!-1 
respectively. 

4) Use c(" and in equation [6] to obtain a second estimate of $ ,$ (2! Set the 
-1 -1 

mean of $ (2) equal to zero and set the sum of squares of $ ('I equal to the sum of 
- I  " 2 " 

- I  

squares of $ ( I ) ;  that is $1;) = c$I:)' .- I  
i = l  i = l  

5) Repeat steps (3) and (4) until convergence. 

6) Compute Eo, = Xo -Jn2. 
7) Obtain starting estimates of g2, g2(l), by finding the vector of plus and minus ones that 

maximizes the number of positive elements in the covariance matrix E'o,Eol, 

8) Use g2(')in equation [lo] to obtain starting estimates of $ , $ ('1.
-2 -2 

9) Use $ ('1 in equation [l  11 to obtain g2(2).
-2 

10) Use g2(*) Set the mean of $ ( 2 )  equal to zero and set in equation [I21 to obtain 92(2! 
-2 

the sum of squares of $ equal to the sum of squares of (f2(I) as in step (4) above. 
-2 

11) Repeat steps (9) and (10) until convergence. 
A A ?  

12) Compute Eo2 = Xo - J.P' $ i? = EOl-y 2 ~$ilg;- -
-2  -2 

2 .  

13) Repeat steps (7)-(12) to estimate remaining dimensions; that is: g3and $i3,g4 
and $i4,. . . ,and &and $ . 

-S 

14) Use the full n by s matrix in equation [7] to obtain the full m by s matrix W and the 

m length vector of constants i . 
15) Use 6 and in equation [6] to obtain a new estimate of 2. 
16) Repeat steps (14) and (15) until convergence. 

ces were then converted to the form shown in equation [I] by adding random 
error to the elements of the matrix and then randomly removing some of the 
elements; that is, X,, = [ X + E 1, . 
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Random error was generated in three ways. First, by sampling from a 
normal distribution with mean 0 and constant variance. Second, by sampling 
from a normal distribution with mean 0 and variable variance (heteroske- 
dasticity).10 And third, by sampling from a uniform [-.5, +.5] distribution. 
The level of error was controlled by adjusting the standard deviation of the 
distribution. 

To create missing data a number was drawn from the uniform [0,1]dis-
tribution for each entry in X + E and if the number exceeded a preset thresh- 
old, the entry was treated as missing. For example, to create a level of 50% 
missing data, if the number drawn was greater than .5, the corresponding 
entry in X + E was removed and treated as missing. Every row was required 
to contain at least s+2 entries. If the number of missing entries resulted in 
fewer than s+2 entries, a new row was created and the process repeated. This 
ensured that all the columns in the target matrix, Xo = [ X + E lo,had ap- 
proximately the same number of missing entries. This procedure was re- 
peated ten times for each true matrix. The results are shown in Table 2. 

The first three columns of Table 2 show the number of rows, the number 
of columns, and the rank of the true matrix X. The fourth column, r-square 
with target, shows the average squared Pearson correlaticnjetween,the ele- 
ments in Xo and the reproduced elements formed by [YW' + JniI,. The 
fifth column, r-square with full, displays the ;quared yearson correlation be- 
tween all the nm elements in X + E and YW' + Jni.The sixth column, r- 
square with true, shows the squared P~azson corr~lation between all the nm 
elements in the true X matrix and YW' + Jni. The seventh column, r- 
square with E-Young, shows the squared Pearson correlation between all the 
nm ekeqents in tbe Eckart-Young approximation of rank s using Theorem I1 
and YW' + Jni.That is, Theorem I1 was applied to the full matrix with er- 
ror, X + E, to produce the rank s approximation matrix. 

The eighth column shows the average squared Pearson correlation be- 
tween the s true basic dimensions and the s estimated basic dimensions; that 
is, the average of the s r-squares computed b~tween each column of the true 
Y matrix, and its corresponding column in Y. 

The ninth and tenth columns are concerned with just the missing data. 
The ninth column shows the squared Pearson correlation between the miss- 
i ~ g ~ e l e m e n t sin the true X matrix and their corresponding estimates in 
YW' + Jni. Finally, for purposes of comparison, the tenth column shows 

'(The error was generated by a normal with mean zero and variance k i o 2  where kijwas ran- 
domly drawn from a uniform [.5, 1.51 for each nonmissing entry of the matrix. 

"Because Y is defined only up to an arbitrary rotation, this was removed before the Pearson r- 
squares were computed. This is known as the "orthogonal procrustes" problem, and it was solved by 
Schonemann (1966). His solution was used to remove the arbitrary rotation. 



Table 2. Monte Carlo Tests of the Equation [I] Model 
(Average of 10 Trials, Standard Deviations in Parentheses) 

N M S 

R2 
With 

Target 

R2 
With 
Full 

R2 
With 
True 

R2 
With 

E-Young 

R2 
With 

True Y 

R2 
With True 

Missing 

R2 
With True 
Miss (Reg) 

Error 
Level 

Percent 
Missing 

1000 25 2 1.000 1 .OM 1.000 1.000 1.000 1.000 1.000 .OO 50 
(.000) (.OOO) (.000) (.000) (.Ooo) (.000) (.OoO) 

1000 25 2 .95 1 .939 .988 993 .988 .986 389 .25 50 
(.001) 
,950 

(.000) 
.95 1 

(.001) 

(.OoO) 
940 

(.OOO) 
940 

( 000) 

t.000) 
.988 

(.001) 
988 

(.om) 

(.000) 
993 
(.ooo)
.993 

(.OOO) 

( 001) 
.988 

(.OOl) 
,988 

(.000) 

( 000) 
.987 

t.001) 
,987 

(.O 12) 
395 

(.012) 
.890 

(.016) 

1000 25 2 ,833 
(.002) 
,832 

(.003) 
.831 

.795 
(.002) 
.794 

(-002) 
797 

.954 
(.002) 
.953 

.956 

,973 
(.002) 
.974 

(.001) 
,975 

.953 
( 003) 
.953 

(.004) 
.956 

.947 
( 003) 

947 
(.003) 
.95 1 

,759 
(.016) 
.765 

(.036) 
.784 

.50 50 

t.002) (.001) (.001) (.OOl) (.002) (.002) (.038) 

1000 25 2 ,698 
(.003) 
,698 

(.002) 
.697 

(.002) 

.632 
(.002) 
.63 1 

(.003) 
,632 

t.003) 

.903 
(.003) 
.900 

(.004) 
.903 

(.003) 

.944 
003) 
.942 

(.003) 
.945 

(.002) 

,901 
(.006) 
,899 

(.008) 
.903 

(.OM) 

.890 
(.005) 
,886 

(.007) 
,891 

( 004) 

,696 
(.022) 
.687 

(.008) 
,700 

(.010) 

75 50 

(continued on next page) 
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the squared Pearson correlation between the missing elements in the true X 
matrix and those estimated by the regression method.12 

The eleventh column shows the level of error introduced. This was com- 
puted as 

Error Level = 

where e,, is the error added to xij, E is the mean of the error, and TI is the 
mean of the xi,. The error level is the ratio of the standard deviation of the 
error to the standard deviation of the xij. 

Finally, the twelfth column shows the percentage of missing elements in 
xo. 

Each entry in the fourth through tenth columns in a row of the table rep- 
resents the average of ten runs using the same true X matrix each time but 
with different error matrices and different patterns of random removal of ele- 
ments. Below each entry is the standard deviation of the ten runs. In the 
eighth column, only the largest of the s standard deviations of the dimension 
by dimension r-squares is shown. 

Table 2 is divided into four sections. In the first and second sections of 
the table the size of the matrix and the level of missing data are held fixed 
while the level of error is increased. When error is present, results for all 
three error distributions-normal with constant variance, normal with vari- 
able variance, and uniform-are shown. For example, when the true matrix 
was 1000 by 25 and rank 2,50% missing, with an error level of .50, then the 
r-square between the entries of X,,and the reproduced elements from .. .. 
[YW' + Jni1],(r-square with target) is 3 3 3  for the normal error constant 
variance case, 3 3 2  for the heteroskedastic normal error, and 3 3 1  for the 
uniform error. The r-squares between the true missing entries and the repro- 
duced missing entries from [YW'+ Jnil],(r-square with true missing) are 
,947, .947, and .95 1, respectively. 

I2In the regression method, for each row of the data matrix, the submatrix of the m by m 
Pearson correlation matrix computed between the columns of the nonmissing entries is inverted and 
multiplied by the submatrix of the correlation matrix corresponding to the columns of the missing 
and nonmissing entries. This produces coefficients that are applied to the nonmissing entries to ob- 
tain the estimates of the missing entries. These missing entries were then used to get a better esti- 
mate of the correlation matrix. Experimentally, I found that iterating this process from 3 to 5 times 
was optimal. 
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Three aspects of sections one and two stand out. First, the accuracy of 
the procedure appears not to be very sensitive to the type of error. The pro- 
cedure recovers the true data-both missing and nonmissing-equally well 
for all three types of error. Second, the procedure appears to be very stable. 
The standard deviations are small. Neither result is surprising. In standard 
OLS the estimates of the coefficients are unbiased in the presence of hetero- 
skedastic error. Indeed, as long as the error process is symmetric, the prin- 
ciple of least squares will ensure that the true data are recovered with rea- 
sonable accuracy. Finally, the regression method of estimating missing 
entries deteriorates badly as the level of error increases. 

In the third and fourth sections of the table only normal error with con- 
stant variance is used and the level of error and the percentage of missing 
data are both held constant at .50 and 50%, respectively. In section three n is 
increased in stages with m and s held fixed, and in section four m is in- 
creased in stages while n and s are held fixed. These two sections show that, 
holding everything else fixed, increasing the size of the matrix results in 
more accurate estimates of the true data-both observed and missing. Once 
again, the ability of the regression method to recover the missing entries is 
poor. 

Although Table 2 is by no means exhaustive, it is apparent that the pro- 
cedure outlined in Section 2 is stable and will reliably reproduce the basic 
dimensions and the overall matrix even at high levels of error and missing 
data. 

B. Estimating Standard Errors 
The purpose of the experiments in this subsection is to assess how good 

a job the scaling procedure does in estimating the variance of the error dis- 
tribution and the variance of the estimated parameters. The former is rela- 
tively easy, the latter is not. 

The standard error of the estimate is: 

where q is the number of observed (nonmissing) elements in Xo and 
s(m+n)+m is the number of parameters estimated by the scaling procedure. 
Table 3 shows some Monte Carlo tests using the normal distribution with 
mean zero and constant variance and the uniform distribution with mean 



974 Keith ?: Poole 

Table 3. Monte Carlo Tests of the Standard Error of the Estimate 
(Average of 10 Trials, Standard Deviations in Parentheses) 

Normal: Uniform: 
Standard Standard 

Error Error of Error of Percent 
N M S Level True o Estimate Estimate Missing 

zero and constant variance. Recall that the value of the true o is set as a frac- 
tion of the standard deviation of the x i jThis fraction is shown under the "Er- 
ror Level" heading in the Table. 

The entries in Table 3 were computed in the same fashion as those for 
Table 2. The entries are the average and standard deviation of ten runs with 
the same true X matrix and true error variance, 02,but different draws from 
the error distribution and different patterns of missing data. Within each 
row the same true X matrix was used so that the results for the two error 
distributions could be compared. 

The scaling procedure does a good job in recovering the standard error 
of the estimate. All the 6's in the table are very close to the true o,and the 
standard deviations are small. Consistent with the results of Table 2, the 
standard deviations increase with the overall error level and the level of 
missing data. 
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With respect to the variance of the estimated parameters, that is, the 
q 's ,  ws ,  and i?s, recall that in ordinary least squares, the variance of the es- 
timated regression coefficients is: 

If the true Y were known and it was used in equation [7] to obtain estimates 
of W and c, then the variances of the w s  and the ?s would be: 

o2
and var(cj) = - , j =  1, ... , m  

n 

where kk is the kth singular value of the true YW'. To see this, recall that 
Y' Y = A and let Y* = [YIJ,]. Note that Y*'Y* will be a s+l by s+l diago- 
nal matrix with A in the upper left s by s submatrix and the s+lst diagonal 
entry will be n. 

Conversely, if the true W and c were known, the variances of the 
estimated q ' s  would also be 02/hkby using equation [6] and the fact that 
W'W = A  

Table 3 shows that 6 is a good estimate of the true o and if the amount 
of missing data is low, then the estimated singular values will be quite close 

62
to the true singular values. Consequently it is tempting to use l;-- to calcu- 

h k  

late standard errors. Because Y, W, and c are all being estimated, however, 
these variance formulas can only be used as a lower bound. In the empirical 
examples below, I compute the standard errors using a simple bootstrap 
analysis. In most practical applications, the rows of the data matrix will cor- 
respond to individuals and the columns to their responses. Consequently the 
individuals can be sampled with replacement to perform a bootstrap analy- 
sis. That is, the rows of the actual Xo are sampled with replacement to form 
a pseudo Xo matrix. Thjs pseudo matrix is then analyzed by the procedure to 
obtain an estimate of Wand c .  This process is repeated 100 times, and the 
standard errors are obtained by computing the sum of squared differences 
between the actual w a n d  and the 100 ws and c's from the bootstrap tri- 
als, dividing by 100, and taking the square root. The bootstrap variances will 

CsL
be, on average, larger than -. 
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4. Relationship With Other Scaling Procedures 
The fundamental difference between the scaling procedure developed in 

Section 2 and other commonly used scaling methods is its generality. The 
procedure estimates a lower rank approximation to any matrix of real num- 
bers with missing data.13 The only assumption made about the true data ma- 
trix, X, is that it is of rank s. By Theorem I, any matrix of real numbers can 
be written as a linear product. Hence, the equation X = UAV' = YW' + J,cf 
is not an assumption but a property of any real matrix. What is important, 
however, is that the decomposition in the form of equation [ I ]  serves as a 
useful model of substantive phenomenon of interest to political scientists. 
Two examples of this are shown in Section 5. 

Most existing scaling techniques that analyze rectangular data matrices 
are designed for distance data. For example, a very common type of data 
matrix of interest to political scientists is preferential choice data which can 
be treated as Euclidean distances between individuals/respondents and 
stimuli. Geometrically, a matrix of squared distances computed between 
points in an s-dimensional space will have rank s+2. If there were no error 
but the matrix had missing entries, then the procedure developed in Section 
2 will exactly reproduce the squared distances by estimating YW' of rank 
s+l.14 Since the elements of YW' + J,c' are squared distances they must be 
analyzed as such and the decomposition of this matrix, UA,+2V',cannot be 
directly used to solve for the points that produce the squared distances.15 In 
addition, in the realistic case where error is present, the scaling procedure 
developed here is not an appropriate model of noisy distance data. 

Examples of distance data are interest group ratings of members of 
Congress, thermometer ratings of politicians by survey respondents, and 
congressional roll call votes.16 Interest group ratings and thermometer 
scores have been analyzed by a number of scaling techniques. The usual 

"This asp:$ of the procedure is discussed in detail in Poole (1997).The Monte Carlo analy- 
sis shows that YW' + J , C  will be a good fit to the Eckart-Young approximation matrix UA,V' of 
any rectangular matrix of real numbers with missing entries. 

I4To see this, let A be an n by s matrix of coordinates and B be a m  by s matrix of coordinates. 
Let diag(AAf)and diag(BB')be the n length and m length vector of diagonal terms of AA' and BB', 
respectively. The matrix of squared distances can be written as: diag(AA')Jm'- 2AB' + 
J,diag(BB')'. This is the product of the two matrices [diag(AA') I - 2A I J,] and [ J ,  I B I 
diag(BB')].Note that diag(AA')Jmf- 2AB' is equivalent to YW' with rank s+l  and Jndiag(BBf)'is 
equivalent to J,r'. 

I5The points producing the squared distances can be found using Schonemann's (1970)solu-
tion to the metric unfolding problem. 

16Seven-point scale data can also be interpreted as distance data. For an interesting analysis 
along these lines, see Jacoby (1993). 
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approach is to treat the ratingslthermometer scores as inverse distances and 
then estimate a set of points corresponding to the politicianslrespondents 
and a set of points corresponding to the interest groups/political figures 
such that the reproduced distances match the inverse ratingslscores as 
closely as possible. This is known as an unfolding problem (Coombs 1964). 
Unfolding a distance matrix is a form of decomposition but the data are not 
being decomposed into a linear product like the model developed here. 
Rabinowitz (1974), Cahoon, Hinich, and Ordeshook (1978), and Brady 
(1990) have developed statistical procedures to solve this problem. 
Rabinowitz uses his line-of-sight method to produce a matrix of dissimi- 
larities between pairs of stimuli from the preference data and then uses a 
nonmetric scaling to obtain estimates of the two sets of points. Cahoon, 
Hinich, and Ordeshook first transform the data by eliminating the squared 
terms in the distance equation and then produce a covariance matrix of the 
cross-product terms. The covariance matrix is then decomposed and the de- 
composition is used to obtain estimates of the two sets of points. Brady de- 
velops a generalized least squares estimation method and applies it to the 
quadratic utility model developed by Hinich (Enelow and Hinich 1984) to 
recover the candidate configuration. In Brady's method only the parameters 
of the distribution of the respondent ideal points are estimated.17 

The Poole and Rosenthal (1997) NOMINATE procedure is an unfold- 
ing method for roll call data. Like the Rabinowitz and Cahoon, Hinich, 
Ordeshook scaling methods it produces a set of points corresponding to the 
members of Congress. It differs from the other scaling procedures in that it 
produces two points for each roll call-one for Yea and one for Nay.18 

The scaling procedure developed here is probably most similar to fac- 
tor analytic work by Aldrich and McKelvey (1977), Enelow and Hinich 
(1994), and Hinich and Munger (1994) on seven-point scale data. The key 
difference is that the factor analytic work, by definition, analyzes covari- 
ance matrices formed from the rectangular data matrix. The Aldrich- 
McKelvey scaling method is a one-dimensional version of the model 
expressed in [ lB] only the model is applied to a transposed matrix where 

I7Earlier work by Weisberg and Rusk (1970) and Rusk and Weisberg (1972) computed corre- 
lation matrices from the rectangular matrix of thermometer scores and then analyzed the correlation 
matrix with nonmetric multidimensional scaling to obtain a configuration of political candidates. 
Given the candidate configuration, respondent locations can be estimated using OLS. Locating the 
individuals via OLS with reference to a given stimulus configuration is known as an external unfold- 
ing analysis (Carroll 1972). 

I8Earlier work by MacRae (1970) on roll call votes applied factor analysis to correlation 
(Yule's Q and other measures) matrices to recover configurations of legislators andor roll calls. 
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m > n. The scaling procedure developed here can be used to estimate more 
than one latent dimension underlying an issue scale. An example is shown 
in Poole (1997). l9 

The two applications of the procedure shown in the next Section both 
assume that the true data matrix, X, has the form shown in equation [lA]. 

5. Empirical Applications 
A. Recovering a Basic Space from the 1980 Issue Scales 

The first application of the procedure is to fourteen issue scales from the 
1980 NES cross-sectional survey. These scales are listed in Table 4. The 
equal rights amendment and the two abortion questions were four point 
scales, the tax cut question was a five point scale, and the remaining issue 
questions were all seven point scales. Table 4A shows the @s^for one, two, 
and three dimensions, and the three singular values of YW'. Table 4B 
shows the estimated t's and w s  and the fits by issue for one, two, and three 
dimensions. Bootstrapped standard errors are shown in parentheses below 
the coefficient estimates. The standard errors were computed as described in 
the previous section.20 

Somewhat over half the variance (r-square of .512) of the individuals' 
issue scale positions is explained by a single dimension. This primary di- 
mension is clearly the classic liberal/conservative continuum familiar to stu- 
dents of American politics. The pre and post liberal/conservative seven point 
scales fit highly with this dimension as well as the government services, 
government help for minorities, and government jobs seven point scales. 
These latter three scales are at the heart of what is meant by liberal/conser- 
vative in American politics-government intervention in the economy. 

The second dimension picks up the two abortion questions, inflation, 
and the women's equal role seven point scale. Adding the second dimension 
raises the r-square for the women's equal role scale to .77. The r-squares for 
the two abortion questions increase to about .30. Inflation, the odd issue in 

I9The method developed by Groseclose, Levitt, and Snyder (1997) to analyze interest group 
ratings is closely related to the Aldrich-McKelvey model. Aldrich and McKelvey assume that the 
stimuli hold fixed positions on an underlying true issue dimension and that a respondent's perception 
of the stimuli issue scale positions are simple linear mappings from the true stimuli positions. In the 
Groseclose, Levitt, and Snyder model, the legislators are assumed to hold fixed positions on a single 
dimension over time. They estimate a linear mapping for each time period for the interest group so 
that the interest group's scale varies over time. They assume that the interest group is external to the 
legislator configuration (cf., Poole and Rosenthal 1997, chap. 8). These linear mappings are used to 
produce the inflation-adjusted ADA scores. 

20Because W is defined only up to an arbitrary rotation, this was removed before the standard 
error computation. That is, each wfrom the bootstrap was rotated to best fit the actual w before the 
squared difference was computed. See note 11 above. 
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this bunch, rises to about .40. The third dimension picks up the relations 
with Russia scale, and more weakly, the defense spending scale. With the 
third dimension, the r-square for the Russia scale rises to .70. The five-point 
tax cut scale doesn't fit well with any of the three dimensions. The problem 
with it is that everyone appears to favor tax cuts. 

If conventional t-tests were applied using the estimated standard errors, 
then all the w s  for the first dimension, seven of the fourteen w s  for the sec- 
ond dimension, and only two of the fourteen 3 s  for the third dimension are 
statistically significant. If Y were known with certainty, then the standard er- 
rors for the 6;s would be 1.3564- = .128, which for reasons ex- 
plained above, is, on average, smaller than the bootstrapped standard errors. 
The standards errors for the 6,'s and 6, ' s  under the certainty assumption 
would be .I44 and ,145, respectively. Both are much smaller than the boot- 
strapped standard errors. 

Figure 1 shows the distribution across the first basic dimension of the 
Carter, Reagan, and Anderson voters for the 1980 election. The Carter and 
Reagan voters are differentiated ideologically with the center splitting be- 
tween them. Anderson was clearly drawing his support from Carter's "terri- 
tory." On a -1 to +1 scale, the mean locations for the Reagan, Carter, and 
Anderson voters were .165, -. 165, and -.113, respectively. The correspond- 
ing standard deviations were .229, .288, and .248. The Reagan voters were 
clearly more ideologically coherent than the Carter voters (the smaller stan- 
dard deviation). This coherence is also reflected in the fact that a larger per- 
centage of Reagan's voters answered all fourteen issues questions than did 
Carter's voters-32.1% versus 26.1%, respectively. However, fully 41.3% of 
Anderson's voters were informed. Given Anderson's failure to "break 
through" to widespread mass awareness of his candidacy and what it stood 
for, it is not surprising that those who did support him were more informed 
than other voters. Third party candidates in the United States typically at- 
tract more intense supporters as a percentage of total support than the two 
major parties (for a history and discussion of this point, see Sundquist 1983). 

B. Fitting Together Coordinate Configurations 
The scaling procedure for estimating equation [I] is also a solution for 

what is known in psychometrics as an "orthogonal procrustes" problem 
(Schonemann 1966; Schonemann and Carroll 1970). Suppose the columns 
of X, are the scaled coordinates of individuals on the same issue scale or at- 
tribute dimension at n different times. With s inherently equal to one, @ will 
be the n by 1 vector of best fitting average coordinates for the indivTduals 
over the time span. This is so because if the elements of the coordinate ma- 
trix X, are replaced by (xij - 2j) / Gj,  this minimizes the sum of squares 
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Figure 1. 1980 Voters on First Basic Dimension 

Number 

Liberal Conservative 

Reagan Carter Anderson 

between the common elements in each pair of configurations. In effect, the 
m configurations are "squeezed together" as tightly as possible when they 
are transformed by (xij - e j )  1 G j ,  and the mean configuration around 
which they are "squeezed" or "targeted" is \ir . 

In order to test the model's performance as an orthogonal procrustes 
procedure, the combined set of W-NOMINATE (Poole and Rosenthal 1997) 
scores for members of the House and Senate for Congresses 75 to 104 (1937 
through December, 1995) will be fitted together. The scores range from -1.0 
to +1.0 and are based upon all the nonunanimous roll call votes taken during 
a Congress. The first dimension score measures the degree of liberalism/ 
conservatism of the legislator. 

It is possible to analyze the House and Senate W-NOMINATE scores 
together because 151 individuals served in both chambers for at least five 
Congresses during the 1937 to 1995 period. If legislators are assumed to 
maintain a fixed position on the underlying 1iberaVconservativebasic dimen-
sion when they move from the House to the Senate or vice versa, then the 
model shown in equation [IB] and the procedure shown in Table 1 can be 
modified so that a joint House and Senate configuration can be estimated. 
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In this application, Xo has thirty columns-one for each Congress-and 
a row for each person serving in at least five Congresses from 1937 to 1995. 
A total of 1,43 1 legislators served in at least five Congresses during this pe- 
riod-1,106 in the House only, 174 in the Senate only, and 151 served in 
both chambers. 

To see how this is accomplished, let n, be the number of legislators who 
served in the House only, let nu be the number of legislators who served only 
in the Senate, nb be the number of legislators who served in both chambers, 
and let \Vh, \Vu, and Wbbe the corresponding vectors of underlying liberal1 
conservative basic coordinates of length n,, nu, and nb, respectively. This 
produces the equations: 

r i 

where XOhand Xo, are the n, + n, by m and nu + n, by m matrices of 
W-NOMINATE scores for the House and Senate, respectively. 

The procedure to estimate equations [17A] and [17B] is the same as that 
shown in Table 1, only now some booeeeping i~~necessary when the legis- 
lator coordinates are estimated. Given Wh, eh, W, ,and i, ,the coordin!te 
for a legislator who only served in the House can be estimated by using Wh, 
and ch,in equation [6]; similarly, if a legislator served only in the Senate, 

then w U ,  and 6, are used in equation [6]. If a legislator served in both 
chambers then a W matrix can be formed from wh,and W, ,by using the 
rows corresponding to the chamber served in and a c vector can be con- 
structed from &,and e, by using the entries corresponding to the chamber 
served in. Given estimates of the legislator coordinates, $ , $ ,and 9, re-
spectively, then it is a simple matter to estimate Wh and

-h ch-u
and W, and c, 

using equation [7]. This process can be repeated as many times as desired. 
The results are shown in Table 5. 

Table 5 shows the fit statistics for the W-NOMINATE first dimension 
scores for the House and Senate in the same fashion as Table 4. Because this 
is overlapping generations data, the requirement of five entries in each row 
of Xo reduced the number of members included in the analysis from the 
early and late Congresses (the n j )  That is, to be included in the column for 
the 75th Congress (the first column of Xo ), a member would have had to 
serve five Congresses beginning with the 75th Congress (service does not 
have to be consecutive). In contrast, to be included in the column for the 
85th Congress, a member could have served in the 81st through the 85th, or 







Table 5B. Fit Statistics by Congress for Combined House and Senate W-NOMINATE Scores (continued) 

Senate House 

Congress "j 2, j R2 "j 'j j R2 

94 116 0.045 1.684 ,912 386 0.138 1.538 .910 
(0.024) (0.05 1 ) (0.015) (0.040) 

95 113 0.075 1.739 ,914 377 0.088 1.766 ,937 
(0.020) (0.084) (0.016) (0.048) 

96 115 0.009 1.875 .93 1 382 0.017 1.790 .952 
(0.025) (0.080) (0.016) (0.051) 

97 111 0.059 1.925 ,928 382 -0.053 1.771 ,958 
(0.030) (0.05 1) (0.017) (0.047) 

98 113 -0.072 1.861 ,949 415 4.024 1.935 .965 
(0.025) (0.067) (0.019) (0.045) 

99 110 -0.060 1.828 ,950 412 -0.030 1.786 .961 
(0.023) (0.066) (0.018) (0.047) 

100 105 -0.163 1.952 ,966 420 4.069 1.691 .961 
(0.023) (0.054) (0.0 18) (0.044) 

101 95 4.112 1.81 1 .972 392 -0.183 1.734 ,966 
(0.021) (0.055) (0.0 18) (0.045) 

102 91 -0.124 1.969 ,973 360 -0.056 1.858 .961 
(0.024) (0.057) (0.019) (0.047) 

103 78 -0.141 2.010 ,954 264 -0.094 1.809 .950 
(0.022) (0.089) (0.019) (0.046) 

104 69 -0.007 2.492 .945 219 0.050 2.196 .95 1 
(0.033) (0.096) (0.023) (0.058) 
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the 85th through the 89th. Finally, to be included in the 104th column, a 
member would have had to serve in five Congresses ending with the 104th. 

The overall fit of the model stated in equation [17] is a respectable r- 
square of .918 indicating that members of Congress are very stable in their 
location on the liberal/conservative dimension over time. The standard er- 
rors were computed using the same approach as that for the issue scale data 
shown in Table 4. If conventional t-tests were applied using the estimated 
standard errors (recall that the "certainty" standard errors are smaller than 
the bootstrapped standard errors), all the w s  for both the House and Senate 
are statistically significant. 

The missing data in this example are qualitatively different from the 
missing data in the 1980 issue scale example. In the issue scale example, 
there is missing data because of nonresponses. Here the data is missing sim- 
ply because legislators were not in Congress. Both are treated the same by 
the scaling procedure. Substantively, if a respondent does not understand a 
question and does not give an answer, then equation [I]  may not be the ap- 
propriate model for that respondent's answers. There is no easy solution for 
this problem. However, if the amount of missing data is low as it is in 1980 
issue scale application, it is probably not a serious problem. 

Given the $'s for members serving in at least five Congresses, coordi- 
nates for members serving in less than five Congresses can be estimated us- 
ing the 9 s  and 6's by applying the transformation: (xij - Cj) / G j  and tak- 
ing the average over the total number of Congresses served. That is: 

where mi is the total number of Congresses served and ranges from one to 
four, and the 9 s  and 6's can be a combination of those from the House and 
the Senate if the member served in both chambers. 

Figure 2 shows the means for the political parties over the 1937 to 1995 
period combining the $i's estimated by the procedure and the $i's from 
equation [IS]. The two chambers are very similar in their patterns over time. 
In the latter part of the New Deal, voting on minimum wages opened up a 
split between the northern and southern wings of the Democratic party. Dur- 
ing World War 11, voting on issues related to the right of Blacks to vote in 
federal elections exacerbated the split (Poole and Rosenthal 1997, chap. 5). 
Southern Democrats move to the right in both chambers until just after the 
Civil Rights era of the mid to late 1960s and then begin moving back to the 
left during the 1970s and 1980s. Republicans shift to the left from the late 



Keith 7:Poole 

Figure 2A. House of Representatives 
1st Dimension of Joint Space 

Figure 2B. Senate 
1st Dimension of Joint Space 

0.4 

.-? 
w 

E 0.2
3 
3 

0 

-
$ -0.2 



989 RECOVERING BASIC SPACE FROM ISSUE SCALES 

1940s and then reverse course after the Civil Rights era. Republicans in both 
chambers have been moving to the right since the late 1970s (Poole and 
Rosenthal 1997; McCarty, Poole, and Rosenthal 1997). Note that because 
each member is assumed to have the same position throughout his career, 
these shifts in the various party means are due to replacement not conver- 
sion. The correlation between the chamber means is .90 indicating that 
whatever forces are at work in American politics tend to work on both cham- 
bers equally regardless of their very different constituencies, terms, and in- 
ternal rules and procedures. Viewed over a long period of time, there is no 
pat answer to the question: is the Senate more liberal than the House.21 The 
corresponding correlations for Republicans, northern Democrats, and south- 
ern Democrats are .81, .84, and .76, respectively. 

6. Conclusion 
The scaling procedure shown in this paper performs, in effect, a singular 

value decomposition of a rectangular matrix of real elements with missing 
entries. In contrast to existing techniques such as factor analysis which work 
with a correlation or covariance matrix computed from the data matrix, the 
scaling procedure shown here analyzes the data matrix directly without any 
intervening transformations of the original data. It is a general-purpose tool 
that can be used to estimate latent/unobservable dimensions underlying a set 
of manifest/observable variables or as a method to obtain an Eckart-Young 
lower-rank approximation matrix of a matrix with missing entries. Monte 
Carlo tests show that the procedure does a good job of reproducing the miss- 
ing elements of a matrix even at high levels of error and missing data. 

Manuscript submitted 21 January 1997. 

Final manuscript received 16 September 1997. 


APPENDIX A 

The partial derivatives of equation [4] are 

?'See Froman (1971) and Kernel1 (1973) for a discussion of House-Senate differences. 
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where n, means that the total of the summation over i may vary from 2m to n depending 
upon how many entries there are in the ith column of Xo . 

To see that y = ,note that 

allThe first term on the right is equal to zero because and - =  0 ,ac
i=1 j=1 j=1 i=1 

and the third and fourth terms are equal to zero because Zvik= 0 .  Hence, the sec- 

ond term, 2nyk ,must equal zero. Therefore, yk = 0 because n > 0. 
To see that the Q's are all zero, consider the two equations: 

and 

because = the first term in both equations are identical. Hence 

Qkhhh= -Qkhhh. NOW, since hhis the hth singular value in A and by assumption the s 
singular values in A are greater than zero, then mkh = -@kh which is possible only if 

mkh = 0. 
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APPENDIX B 

To maximize the number of positive elements in the m by m covariance matrix 

a vector of plus and minus ones must be found so that when they are placed on the 
diagonal of an m by m diagonal matrix A*, the number of positive elements in the m by 
m matrix: 

will be maximum. 
For example, suppose the covariance matrix is 

Clearly, changing the signs of the fourth column and row will reduce the number of 
negative elements in the matrix. That is, 

Any further changes of the signs of the columns/rows will increase the number of nega- 
tive elements in the matrix. Note that another solution for the diagonal of A* is 
(-1,1,1,1). This also reduces the number of negative elements to four. 

A simple algorithm to produce a diagonal for A* is to find the row in the covariance 
matrix with the most negative elements and change its sign and that of the conespond- 
ing column (if no row has more than (m - 1)/2 negative elements, than no sign changes 
are necessary). This process is then repeated. The row with the next most negative 
elements is found and its sign is changed. This process can be continued until all rows 
have (m - 1)/2 or less negative entries. 
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